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Slice2Mesh: 3D Surface Reconstruction from
Sparse Slices of Images for the Left Ventricle

Jia Xiao, Wen Zheng, Wenji Wang, Qing Xia, Zhennan Yan,
Qian Guo, Xiao Wang, Shaoping Nie, and Shaoting Zhang

Abstract— Cine MRI is a widely used technique to eval-
uate left ventricular function and motion, as it captures
temporal information. However, due to the limited spatial
resolution, cine MRI only provides a few sparse scans at
regular positions and orientations, which poses challenges
for reconstructing dense 3D cardiac structures, which is
essential for better understanding the cardiac structure and
motion in a dynamic 3D manner. In this study, we propose
a novel learning-based 3D cardiac surface reconstruction
method, Slice2Mesh, which directly predicts accurate and
high-fidelity 3D meshes from sparse slices of cine MRI
images under partial supervision of sparse contour points.
Slice2Mesh leverages a 2D UNet to extract image features
and a graph convolutional network to predict deformations
from an initial template to various 3D surfaces, which en-
ables it to produce topology-consistent meshes that can
better characterize and analyze cardiac movement. We also
introduce As Rigid As Possible energy in the deformation
loss to preserve the intrinsic structure of the predefined
template and produce realistic left ventricular shapes. We
evaluated our method on 150 clinical test samples and
achieved an average chamfer distance of 3.621 mm, out-
performing traditional methods by approximately 2.5 mm.
We also applied our method to produce 4D surface meshes
from cine MRI sequences and utilized a simple SVM model
on these 4D heart meshes to identify subjects with myocar-
dial infarction, and achieved a classification sensitivity of
91.8% on 99 test subjects, including 49 abnormal patients,
which implies great potential of our method for clinical use.
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I. INTRODUCTION

CARDIAC magnetic resonance imaging (MRI) is one of
the gold-standard medical imaging modalities for diag-

nosing cardiac anatomy and function [1]. Most often, cine MRI
is a dynamic MRI technique that captures the heart’s motion
throughout the cardiac cycle. It allows physicians to observe
cardiac function and structural changes, such as ventricular
contraction and valve movements, essential for diagnosing
heart diseases like cardiomyopathy and valvular disorders.
However, cine MRI usually images the heart with high soft-
tissue contrast in a collection of sparse and intersecting 2D
image planes, which are a stack of short-axis (SAX) and a
few long-axis (LAX) slices (referred as key slices), result-
ing in suboptimal image resolution for detailed anatomical
assessments, and spatial constraints due to its two-dimensional
nature, which can hinder comprehensive representation of the
heart’s 3D structure and dynamic function [2].

In contrast, 3D mesh reconstruction of the heart from cine
MRI holds significant clinical value and advantages. Unlike
3D segmentation masks, which primarily provide volume and
surface area metrics, 3D meshes offer detailed geometric
and structural insights into cardiac anatomy. This enhanced
precision is crucial for diagnosing and monitoring various
cardiac conditions such as cardiomyopathies, valve diseases,
and myocardial infarctions. These models enhance anatomical
understanding and enable quantitative assessments of cardiac
volume, wall thickness, and deformation, providing more accu-
rate functional evaluations. Moreover, 3D mesh reconstruction
can be integrated with computer-aided design (CAD) and
computational fluid dynamics (CFD) for simulating hemo-
dynamics and cardiac mechanics, guiding clinical decisions
and surgical planning [3]–[9]. For instance, in assisting device
implantation of the left ventricle (LV), 3D mesh models assist
in determining optimal placement, reducing surgical risks, and
improving outcomes [10].

Generally, traditional cardiac surface reconstruction com-
prises two steps: cardiac image segmentation and mesh gen-
eration from the segmentations. However, cine MRI is limited
to capturing the heart’s anatomy at a finite number of spatial
locations and orientations. As a result, it provides a sparse
representation of the actual 3D geometry of the human heart
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[4], rendering direct application of traditional isosurfacing al-
gorithms on cardiac segmentation results unfeasible due to the
sparsity of the input data. To overcome this limitation, previous
research has adopted a mesh adaptation approach. Van et al.
[11] introduced a sparse active shape model (SPASM) for
the automatic segmentation of cardiac MRI image datasets,
featuring multiple planes with arbitrary orientations and sig-
nificantly undersampled regions. Villard et al. [12] proposed
a methodology for reconstructing geometrical surface meshes
from sparse, heterogeneous, non-coincidental contours by de-
formation from a template mesh. Odille et al. [13] employed
an implicit B-spline surface reconstruction algorithm for the
reconstruction of the LV cavity surface from a sparse set of 2D
contours. Attar et al. [14] utilized the SPASM, which consists
of a point distribution model (PDM), an intensity appearance
model (IAM), and a model matching algorithm, to directly
reconstruct 3D segmentation meshes from cine images. Loke
et al. [5] applied smooth mappings known as diffeomorphism
to adapt the 3D end-diastolic model of the right ventricle
(RV) to the 2D segmentation contour points. Hu et al. [15]
leveraged a 3D active shape model (3D-ASM) alongside an
image intensity model to align initial meshes with ground-truth
contours. Bennati et al. [6] morphed a sphere surface to 2D
segmentation contours to reconstruct 3D RV meshes based on
distance fields. However, these techniques are labor-intensive,
with the manual adjustment of optimizer parameters proving
to be complex, significantly limiting the feasibility of mesh
reconstruction for real-time applications in surgical guidance
and navigation [16].

Deep-learning-based methods have also been explored
for this task and can be classified into three types:
image-interpolation-based, contour-to-mesh-based and image-
to-mesh-based methods. Image-interpolation-based methods
mainly rely on image interpolation techniques to generate high
spatial resolution images and apply sophisticated subsequent
segmentation and iso-surface extraction to obtain the final 3D
shape. Biffi et al. [17] first segment the 2D SAX images and
then reconstruct the 3D high-resolution volume based on a
variational autoencoder. Chang et al. [18] propose a latent-
space-based generative method to jointly generate 2D SAX
segmentation and 3D volume by interpolating latent codes. To
transform dense 3D volumes into surface meshes, isosurfacing
algorithms such as Marching Cubes [19] are subsequently
employed. However, these methods necessitate manual adjust-
ments to segmentation and interpolation outcomes to achieve
smoother and more precise 3D meshes, thereby introducing
time-consuming artifacts.

Contour-to-mesh-based methods segment the image into
contours by a typical image segmentation model and then
learn to directly generate the 3D shape from sparse contours or
points. Beetz et al. [20] developed Point2mesh-Net, utilizing
the Point Convolution Block to directly convert sparse point
clouds into meshes. Furthermore, Beetz et al. [21] initially
approximate the fitting of the template mesh to the sparse
contours, followed by the application of a U-Net based on
graph convolution network (GCN) to enhance the mesh’s
accuracy and smoothness. These techniques typically employ
synthetic data from the statistical shape model (SSM) [22]

for training, capturing contours or point clouds. However, the
SSM, constrained by extensive manually-defined parameters,
proves to be unsuitable for clinical data, characterized by its
diverse shapes. Chen et al. [16] embarked on segmenting
a stack of SAX images from the clinical dataset of the
UK Biobank study (UKBB) [23] to obtain contour points.
Subsequently, they utilize a GCN-based network to morph the
template mesh into the targeted mesh. It is critical to acknowl-
edge, however, that the ground-truth (GT) meshes utilized for
training these methods are generated by models rather than
manually annotated, attributable to the complexity of mesh
labeling, potentially leading to inaccuracies. Moreover, these
methodologies reconstruct meshes solely from contours or
points, neglecting the cine image characteristics.

Image-to-mesh-based methods directly reconstruct cardiac
meshes from sparse cine images, diverging from the in-
direct approaches characterized by image-interpolation and
contour-to-mesh-based methods. Tothova et al. [24] introduce
a probabilistic deep learning strategy for the concurrent 3D
surface reconstruction from sparse two-dimensional MR image
data, coupled with uncertainty prediction through a Gaus-
sian distribution. Xia et al. [25] employ a point distribution
model informed by deep learning to engineer 3D meshes.
These techniques utilize reference 3D meshes for supervised
training, generated not through manual labeling but by non-
rigid registration algorithms. Hence, the fidelity of reference
meshes serving as ground truth critically impacts the training’s
accuracy.

While some works focus on the RV [5], [26], [27] or
bi-ventricle reconstruction [15], [16], [28], our work mainly
focuses on generating LV meshes. In clinical practice, 3D
mesh reconstruction of the LV is prioritized over that of the RV
due to the LV’s crucial role in the systemic circulation, where
it pumps oxygenated blood from the heart to the entire body.
The functional state of the LV directly impacts the systemic
supply of blood and oxygen. The LV dysfunction, including
conditions such as hypertrophy and dilated cardiomyopa-
thy, represents a leading cause of heart failure, significantly
affecting patient outcomes. Thus, accurate assessment and
continuous monitoring of LV structural and functional changes
are essential for the diagnosis and management of heart failure
[29], [30]. In contrast, the RV primarily pumps deoxygenated
blood to the lungs for gas exchange. Although the RV dys-
function can lead to clinical complications, its evaluation
and intervention strategies are relatively simpler. Furthermore,
the LV’s pivotal role in cardiac surgeries and interventional
procedures underscores its precedence in 3D reconstruction
efforts. For instance, precise localization of the LV scar tissue
is crucial for assessing and treating recovery after myocardial
infarction, a concern that is less prevalent with the RV [10],
[30].

Given the limitations inherent in existing traditional and
deep-learning-based mesh reconstruction techniques, along-
side the critical significance of the LV reconstruction, we
present a pioneering and pragmatic image-based deep-learning
strategy named Slice2Mesh, geared towards the reconstruction
of 3D cardiac surfaces, with a particular focus on the LV.
The cornerstone contributions of our work are delineated as
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follows:
• Our method is image-to-mesh based, allowing the gen-

eration of accurate and smooth 3D meshes by directly
leveraging sparse SAX and LAX image features without
the need for postprocessing.

• Leveraging a template mesh as a foundation for the
deformed predicted meshes allows us to integrate prior
shape information, compensating for the dearth of spatial
information stemming from image sparsity. Moreover,
incorporating the As Rigid As Possible (ARAP) energy
[31] into our model as a loss function facilitates the
optimization of local deformation smoothness, thereby
fully utilizing prior shape information.

• We eschew the requirement for 3D meshes as a refer-
ence, utilizing solely sparse contour points transformed
from 2D segmentation labels to constrain deformation.
This yields comparable results to 3D constraints while
necessitating less supervision information.

• Our model has been subjected to rigorous training and
evaluation using clinical data. Furthermore, we have im-
plemented our methodology in reconstructing 4D (3D+T)
cardiac meshes to diagnose myocardial infarction (MI),
a prevalent and high-risk cardiovascular condition. Em-
pirical evidence underscores the efficacy and accuracy of
our approach.

II. METHODS

In this section, we will introduce the pipeline of our method.
Our Slice2Mesh architecture is depicted in Fig. 1. It contains
three modules: segmentation module, feature sampling module
and mesh deformation module. The segmentation module
extracts image features with different resolutions and channels
for SAX and LAX views. The feature sampling module is to
sample image features to specific vertices of the initial or pre-
viously deformed mesh. The deformation module iteratively
deforms the initial mesh to the target contour points using
the sampled features. Section II-A covers the preprocessing
stage, which is the initial step in the subsequent process.
Following that, Section II-B, Section II-C and Section II-D
provide detailed introductions to the three modules in our
model. Finally, Section II-E outlines the loss function used
across all three modules.

A. Preprocessing
The preprocessing phase involves correcting the misalign-

ment of image slices, creating a reference point cloud for
supervised training, resampling images to the same resolution
and cropping them to the same shape, and selecting and
processing the template mesh to generate the initial mesh.

1) Misalignment correction: Clinical data has misalignment
between slices caused by multiple breath holding and possible
body movement during acquisition [32]. Given the contours
extracted from segmentation masks, it is possible to optimally
align the SAX and LAX slices in 3D space to minimize
the misalignments. However, a perfect alignment, where the
distances between SAX and LAX contours are zero, is usu-
ally not achievable due to motion-related deformations and

inconsistencies in the contouring of the slices [33]. Therefore,
we apply an iterative misalignment correction algorithm [34].
In detail, for each slice of both the SAX and LAX slices, we
start by locating the intersection points where the slice contour
intersects with all other slice planes. Then, we identify the
intersection points where the slice plane intersects with all
other slice contours. After finding the centroids of both sets
of intersection points, we calculate the distance between the
target centroid and the source centroid, which gives us the
correction value. This correction value is then used to correct
the slice. By repeating this process iteratively, we can obtain
the final correction matrix for each slice of both the images
and masks.

2) Reference point cloud generation: After aligning each
image and mask slice, we convert the corrected contour points
from image coordinates to world coordinates using the original
DICOM information of origin, direction, and spacing. These
points can be seen as sparse point clouds and used as a
reference for training. It’s important to note that the method for
correcting misalignments based on contours mentioned above
isn’t perfect due to the complexity of intra and inter-slice
misalignment. This means that the SAX and LAX contours
may not be perfectly aligned, leading to chaotic deformation
and unsmooth surfaces in these areas. To minimize the impact
of the misalignment, we remove the LAX contour points
between the top and bottom SAX slices and only keep the
LAX contour points in the basal and apical areas to monitor
the local deformation where there is no SAX slice image
information.

3) Image resampling and crop: As the images and labels
have different in-plane resolutions and shapes that can not
be inputted into the model, we first resample the images and
label to the in-plane resolution of 1 mm×1 mm by linear
interpolation while the thickness in the z-orientation remains
unchanged, and then center-crop-pad them to the shape of
256×256×N, where N is 16 for SAX images and 1 for LAX
images.

4) Mesh initialization: After obtaining sparse reference point
clouds to constrain the mesh deformation, we need to generate
initial meshes for each sample to deform from. We have two
template meshes of the left myocardium, one at the end of
diastole (ED) and the other at systole (ES), obtained from
a statistical shape model1 [22]. We use a nonrigid Iterative
Closest Point (ICP) algorithm [35] to adjust the ES template
to match the ED template, ensuring that both meshes have the
same topology. As a result, both the ES and ED template mesh
have 13808 vertices and 27612 faces. To make the template
mesh more adaptable to various heart shapes in a heart cycle,
we create a mesh in the middle phase of ED and ES by linearly
interpolating the vertex positions in ED and ES, which acts
as the final template mesh. It is subsequently flipped in z-
orientation and smoothed using Laplacian smoothing [36] in
Meshlab [37], in which the smoothing steps are 3, and the 1D
boundary smoothing and cotangent weighting are used.

To account for the various locations and shapes of human
hearts, we need to roughly align the template mesh before

1https://wp.doc.ic.ac.uk/wbai/data

https://wp.doc.ic.ac.uk/wbai/data
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training to accurately deform it to match the target contour
points. For each sample, we start by uniformly sampling the
template surface to create a point cloud with the same number
of points as the reference point cloud. Then, we use the
rigid ICP algorithm [38] to calculate a rotation matrix and
a shift matrix from the sampled point cloud to the reference
point cloud in order to make the two point clouds as similar
as possible. The transformed template mesh becomes the
initial mesh for the corresponding sample during the training
process. In the inference stage, the output mask from the
segmentation module is transformed to create contour points,
which are then used to roughly align the template mesh and
generate the initial mesh.

B. Segmenation module
The segmentation module takes resampled and cropped

images as input and generates image features with different
resolutions of 256×256, 128×128, 64×64 and 32×32 with
corresponding channels of 16, 32, 64 and 128. It is based on a
2D UNet [39] architecture with global convolution layers [40]
and Resblocks. Incorporating global convolution layers offers
significant advantages. A larger kernel size expands the recep-
tive field while employing separate k × 1 × 1 convolutions
in different directions yields superior performance compared
to using k × k × k convolutions directly, as demonstrated
in [40]. To leverage these benefits, we strategically position
global convolution layers in a few encoder layers housing
higher-resolution features. Additionally, by integrating global
convolution layers with multi-scale kernels, we enhance fea-
ture diversity to address the potential loss of thin structures in
deep intermediate layers, which could otherwise compromise
segmentation accuracy. We train three segmentation modules
for three views of images and return segmentation masks and
image features, respectively.

C. Feature sampling module
The feature sampling module is the critical connection be-

tween the segmentation module and the deformation module.
It takes the image features from the segmentation module
as input and generates grid-sampled features on specific
vertices. In this section, we introduce the selection of slice
vertices where we sample the image features and the weighted
neighborhood feature sampling method, which improves the
sampling accuracy.

1) Slice vertices selection: The initial or previously de-
formed mesh contains complete 3D space information, while
only a few slices in 3D space have image features. Therefore,
to fill the image features to specific vertices of each slice, we
first select the mesh vertices in the slice location. Note that the
vertices are not precisely in the slice plane; we first find all
faces that the slice plane goes through and then get the nearest
vertex in each selected face to the slice plane. Because the
mesh with 13808 vertices is dense, the distances away from
the plane can be ignored.

2) Weighted neighbourhood feature sampling: The feature
vector of each slice is extracted from image features by feature
sampling at locations of the slice vertices sampled from the

initial or previously deformed mesh in each iteration. Some
works [41] sample features at exact vertex locations referred
to as point sampling, while this restricts the sampler’s ability to
pool information from its neighborhood. While other methods
[42] sample features at a fixed neighborhood around the vertex,
referred to as neighborhood sampling, they obtain the final
feature in the neighborhood by simply calculating the mean
value, which restricts the network’s ability to learn the weights
in the neighborhood. We design a weighted neighborhood
feature sampling method to sample the pixel features in the
slice.

In detail, we assume that one training sample has Ns slices
of SAX and LAX images in total. Each image slice has four
image features Ii with different channels and resolutions Ci×
Hi×Wi, where i = 0, 1, 2, 3. We first initial the feature vector
of all vertices F ∈ RC×Nv with zeros, where Nv is the total
number of vertices and C = 16+ 32+ 64+ 128 = 240 is the
addition of channels of 4 different resolution image features.
To project corresponding image features onto slice vertices,
we compute the corresponding image coordinates Ls in the
image feature maps from the vertex locations of the initial
or previously deformed mesh by transforming the coordinates
from world space to image space using the origin, spacing
and orientation information of the original dicom data. Then,
we utilize bi-linear interpolation to sample the image features
into the fixed neighborhood Ns with 8 neighboring pixels and
the computed center pixel itself. We train a neural function to
return the weights Wi of 9 pixels, to sum up the 9 features in
the neighborhood. The features for each slice Fs are obtained
afterward by concatenating 4 different sampled image features.
The procedure can be formulized as,

Fs = CONCAT(BILINEAR(Ii,Ns)×Wi|i = 0, ..., 3) (1)

where Ii ∈ RCi×Hi×Wi , Ns ∈ RNs×9, BILINEAR(Ii,Ns) ∈
RCi×Ns×9, Wi ∈ R9×1, Fs ∈ RC×Ns and C =

∑3
i=0 Ci =

240.
Then, the sampled features of each slice Fs are filled into

corresponding locations of the slice in F . Due to the sparsity
of slices, F can not be fully filled, which means F has
zeros in some slices of vertices. The graph convolutions in
the deformation module are used to transfer and collect the
features between vertices, which is the interpolation operation
in graph space.

D. Deformation module

The deformation module takes the sampled features from
the feature sampling module as input and generates the
deformed meshes from the initial meshes. In this section,
we introduce the graph convolution theory and the iterative
deformation mechanism.

1) Graph convolution: A 3D mesh is a collection of vertices,
edges and faces, which defines the shape of a 3D object; it can
be represented by a graph M = (V, E ,F) where V = {vi}Ni=1

is the set of N vertices in the mesh, E = {ei}Ei=1 is the set of
E edges with each connecting two vertices, and F = {fi}Ni=1
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Fig. 1. Diagram of the proposed cardiac surface reconstruction approach, Slice2Mesh. (a) The architecture. It consists of three modules:
segmentation module in the blue box, feature sampling module in the brown box and mesh deformation module in the green box. The segmentation
module extracts image features with different resolutions and channels. The feature sampling module is to sample image features to specific
vertices of the initial or previously deformed mesh. Note that we just use images to show the sampling procedure clearly, and in practice, the
sampling operation is applied to image features. The deformation module iteratively deforms the initial mesh to the target contour points using the
sampled features in the feature sampling module. The labels are transformed to generate contour points, which are used for coarse registration
of the template mesh and supervision for mesh deformation in the training phase. In the inference stage, the contour points for template mesh
registration are transformed from the output masks of the segmentation module (b) A GCN block. It consists of eight graph convolutional layers and
one output layer.

are the feature vectors attached on all vertices. A graph-based
convolutional layer is defined as

Fout = σ(θ0Fin + θ1FinL̃), (2)

where θ0, θ1 ∈ Rcout×cin are trainable weights, Fin ∈
Rcin×N , Fout ∈ Rcout×N are input and output feature vectors
of the graph convolution layer attached on all vertices, and

L̃ = D̃− 1
2 ÃD̃− 1

2 ∈ RN×N , (3)

with adjacency matrix Ã = A+ IN and degree matrix D̃ii =∑
j Ãij is the normalized Laplacian matrix which represents

the connectivity information between vertices [43]. N is the
number of control points. cin and cout are the input and output
graph feature channels, respectively.

2) Iterative deformation: The deformation module comprises
four deformation blocks (four iterations) with graph convolu-
tional layers that gradually deform the initial meshes toward

reference points based on the concatenated feature vectors
F from the feature sampling module in each iteration. The
concatenated feature vectors within each mesh deformation
block are processed by four graph residual blocks containing
eight graph convolutional layers. We then employ an additional
graph convolutional layer to predict offsets as 3D feature
vectors and add them with the vertex coordinates of the initial
mesh or the mesh from the previous deformation block to
obtain the current predicted vertex coordinates.

E. Loss function

We first train three segmentation modules for SAX, 2-
chamber LAX and 4-chamber LAX images supervised by
reference masks, respectively, by using a hybrid loss function
containing cross entropy and dice loss in which the loss
balance factor is 0.5. After that, we extract three types of
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image features from three segmentation modules and feed
them into the deformation module to train it supervised by
reference sparse contour points obtained from reference masks.
The mesh loss for training the deformation module includes
chamfer distance loss, edge length loss, normal loss and
Laplacian loss. Besides, we add ARAP loss to make full use
of the prior shape information because of the sparsity of image
information.

1) Chamfer distance loss: We constrain the deformation
using chamfer distance loss LCD between the predicted and
reference contour points in key slices. Chamfer distance loss
is applied to capture an overall distance between the predicted
points and points of reference. It is defined by,

LCD(P ,G) =
1

|P |
∑
p∈P

min
g∈G

∥p−g∥22+
1

|G|
∑
g∈G

min
p∈P

∥g−p∥22,

(4)
where P and G are the predicted and reference contour points
in all key slices. Particularly, the myocardium includes the
endocardium and epicardium. To make the deformation more
accurate, we calculate the chamfer distance loss separately for
endocardium and epicardium points, which means

LCD = LCD endo + LCD epi. (5)

2) Smooth loss: We introduce three regularization terms,
edge length loss Ledge, normal loss Lnormal and Laplacian
loss Llap, to improve convergence and smoothness of the
output meshes. These losses are implemented by Pytorch3d2

functions. Besides, we introduce the ARAP loss Larap to make
the local deformation as rigid as possible, which makes full
use of the prior shape information.

The ARAP energy, a widely recognized non-rigid defor-
mation energy, was initially introduced and defined in [31]
for surface models where the triangular face serves as the
fundamental unit. Given a vertex vi and its neighbor vertices
N (i), a cell Ci is defined as the unit containing all the
triangular faces in the neighborhood. This energy quantifies the
deformation between cells before and after deformation, and
the overall ARAP energy is computed as the average energy
of all cells within the neighborhood.

Given the cell Ci corresponding to vertex vi, and its de-
formed version C′

i, we define the approximate rigid transforma-
tion between the two cells by observing the edges emanating
from the vertex vi. If the deformation Ci → C′

i is rigid, there
exists a rotation matrix Ri such that

e′ij = Rieij ,∀j ∈ N (i), (6)

where eij = vi − vj is the edge for vi and vj in the cell
Ci, and similarly for e′ij for the deformed cell C′

i. N (i) is the
neighborhood of vertex vi. When the deformation is not rigid,
we can still find the best approximating rotation Ri that fits
the Eq. (6) in a weighted least squares sense, i.e., minimizes

L(Ci, C′
i) =

∑
j∈N (i)

∥e′ij −Rieij∥22, (7)

where L(Ci, C′
i) is the ARAP loss for cell Ci.

2https://pytorch3d.org/

To obtain the optimal rotation Ri, we first denote

Si =
∑

j∈N (i)

eije
′T
ij = EiE

′T
i , (8)

where Ei is the 3×|N (i)| containing eijs as its columns, and
similarly for E′T

i . Then one can derive the optimal Ri from
the singular value decomposition of Si = UiΣiV

T
i :

Ri = ViU
T
i . (9)

By substituting the optimal Ri into the Eq. (7), we can
get the ARAP loss for cell Ci. By averaging the ARAP loss
for cells of all vertices, we get the total ARAP loss. ARAP
loss tries to make the local deformation of vertices as rigid
as possible and not so dramatic away from the vertices before
deformation.

Subsequently, the ARAP energy has undergone further
refinement and adaptation in various studies, including [44]
and [45]. In [44], ARAP energy was integrated into a train-
able model for general surface meshes using deep learning
methodologies and was extended as a restricted loss function
through the decomposition of the Hessian spectrum as an
approximation of the ARAP energy. In [45], the original
ARAP energy formula for 3D surface model deformation was
extended to 3D volumetric mesh deformation and utilized for
the reconstruction of aortic valves from 3D CT images. The
fundamental unit was transitioned from the triangular face
to the hexahedron, and leveraging an equivalent number of
neighboring vertices per vertex in the template mesh expedited
the computation of the overall ARAP energy through matrix
operations.

In contrast to the methodologies presented in [44] and [45],
our approach directly leverages the original ARAP energy
formula introduced in [5] as the loss function to govern
the reconstruction of 3D surface meshes from 2.5D sparse
cine images. Our approach refrains from relying on spectral
decomposition for approximation and upholds the triangular
face as the fundamental unit. Given the variable number of
neighboring vertices in our template mesh and the inapplica-
bility of matrix acceleration, we employ a strategy of randomly
selecting four vertices in the neighborhood for each vertex
during each iteration to expedite matrix calculations.

After getting ARAP loss, the total smooth loss is

Lsmooth = λ1Lnormal + λ2Llap + λ3Ledge + λ4Larap. (10)

The hyper-parameters λ0, λ1, λ2, and λ3 are empirically
determined to be 15.0, 1.0, 20.0, and 5.0, respectively. We
write the complete mesh loss to train the deformation module
as

Lmesh =

L∑
l=1

(Ll
CD + Ll

smooth), (11)

where L is the number of iterations in the deformation module.

III. EXPERIMENTS

A. Dataset and implementation
We have obtained two clinical cine MRI datasets. One of

the datasets is a private cine MRI dataset from Beijing Anzhen

https://pytorch3d.org/
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TABLE I
THE DEMOGRAPHIC INFORMATION OF TWO DATASETS

Type Dataset
Private(MI) UKBB(healthy)

Subjects number 50 250
Age(years) 56 ± 12 55 ± 9

Male gender(n(%)) 42(84%) 161(64.4%)
Weight(kg) 82 ± 7 76 ± 15
Height(cm) 175 ± 8 169 ± 10

Body surface area(m2) 1.91 ± 0.14 1.83 ± 0.22
Body mass index(kg/m2) 26.0 ± 2.9 25.1 ± 3.2

Hospital. It consists of 50 abnormal subjects with varying
degrees of myocardial infarction, and each subject has 25
phases in a cardiac cycle. The cine images were captured using
GE DISCOVERY MR750w scanners. The in-plane resolution
ranges from 0.87 mm to 1.72 mm, with a mean value of 1.21
mm. The slice thickness ranges from 8.0 mm to 10.0 mm, with
a mean value of 8.24 mm. The in-plane image size ranges from
256 to 320. The number of SAX slices varies from 9 to 15,
with a median value of 11, while the number of 2-chamber
and 4-chamber LAX slices is both one. The other cine MRI
dataset is a subset of the UKBB dataset3 [23], which consists
of 250 healthy subjects of the UK Biobank study, and each
subject has 50 phases in a cardiac cycle. The cine images were
collected using SIEMENS scanners. The in-plane resolution
ranges from 1.83 mm to 2.31 mm, with a mean value of 1.86
mm. The slice thickness is 8.0 mm. The in-plane image size
ranges from 138 to 210. The number of SAX slices ranges
from 7 to 13, with a median value of 11, while the number of
2-chamber and 4-chamber LAX slices is both one. Additional
demographic information for the two datasets can be found in
Table I.

We randomly selected 5 phases for each subject in the
private dataset while specifically sampling two phases of ED
and ES for each subject in the UKBB subset. In total, our
dataset consists of 750 samples. We divided the dataset into a
training set (600 samples) and a test set (150 samples) at the
subject level. Each sample includes a stack of SAX images,
one 2-chamber LAX image, one 4-chamber LAX image, and
corresponding myocardium segmentation labels, which were
manually annotated. The ground-truth sparse contour points
used to train the deformation module are transformed from
reference segmentation labels.

We use the Adam optimizer in all experiments with a
learning rate of 0.001 and a batch size of 4 to train Slice2Mesh
for 50 epochs. The network is implemented using Python
3.7.10 and Pytorch 1.10.2, and all experiments are executed
on a single NVIDIA GeForce GTX 3090 GPU (24GB).

B. Baseline

For image segmentation, we compare our ResUnet of the
segmentation module with Unet [39] and TransUnet [46] for
SAX, 2-chamber LAX and 4-chamber LAX images.

For mesh reconstruction, various techniques such as im-
age interpolation followed by segmentation and isosurfacing,

3https://biobank.ndph.ox.ac.uk/

deformation from point clouds or contours, point cloud up-
sampling and mesh reconstruction from a single image ad-
dress the reconstruction problem in different ways. As we do
not have 3D meshes for reference, the deep learning-based
methods can not be trained on the same dataset, and we can
not compare our method with them directly. So we first choose
to compare our method with three traditional nonrigid point
set registration techniques, deformation transfer for triangle
meshes (DTTM) [47], optimal step nonrigid ICP (NrICP) [35],
and nonrigid coherent point drift (NrCPD) [48], where the
template mesh is the same as ours, and the hyper-parameters
are tuned based on samples from the training and validation
set. DTTM and NrICP are implemented by Trimesh4, and
NrCPD is implemented by Probreg5. In addition, for better
understanding of the performance of our method, we per-
formed an indirect comparison of slice segmentation accuracy
and basic physiological indexes at the subject level with three
learning-based reconstruction methods: the fully convolutional
network (FCN) by Bai et al. [49], the sparse active shape
model by Attar et al. [14] and the deep-learning-based point
distribution model by Xia et al. [25].

C. Metrics
Dice and IoU (Intersection over Union) metrics are calcu-

lated to evaluate the accuracy of three segmentation modules
of SAX, 2-chamber LAX and 4-chamber LAX images.

Reconstruction accuracy of the deformation module com-
pared with nonrigid point set registration techniques is mea-
sured using 3D chamfer distance (CD), earth mover’s distance
(EMD) and Hausdorff distance (HD3d). There are no avail-
able reference meshes, so these three metrics are calculated
between the sparse predicted and reference points sampled
in key slices. To fully evaluate the deformation accuracy, we
extract the segmentation contours from predicted meshes in
SAX planes, transform the contours from world coordinates
to image coordinates and calculate the Dice and IoU indexes
between the transformed contours and reference contours in
specific SAX slices. To evaluate the smoothing degree of the
predicted mesh, we calculate Laplacian smoothing loss on the
mesh.

Moreover, we conduct the indirect comparison with three
learning-based methods using three 2D metrics: Dice, mean
contour distance (MCD). [25] and HD (HD2d) between recon-
struction contours (obtained from 3D meshes in SAX planes)
and reference contours. The MCD is actually the 2D version
of CD, with the only difference being an additional division
by 2.

The average value and standard deviation are summarised
for all evaluation metrics.

D. Accuracy of 3D mesh reconstruction
Table II presents the quantitative segmentation results of

the segmentation module in three image views on the test
set. Compared with Unet [39] and TransUnet [46], our seg-
mentation model, which incorporates the Unet with global

4https://trimsh.org/trimesh.registration.html
5https://github.com/neka-nat/probreg

https://biobank.ndph.ox.ac.uk/
https://trimsh.org/trimesh.registration.html
https://github.com/neka-nat/probreg
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convolution layers and Resblocks, demonstrates improvements
in both the Dice and IoU indices across all three image
views. Enhanced segmentation outcomes have the potential to
yield more precise image features for the subsequent feature
sampling module and deformation module.

Fig. 2 shows three samples of our reconstructed 3D cardiac
shapes. The shapes are represented as corresponding 2D
contours overlaid with the SAX image slices of base, mid
and apex positions. The contours predicted by our method are
shown in green, while the GT masks are shown in red. It can be
seen that the reconstructed contours are close to the reference
masks in the base, mid and apex locations, which confirms that
our model can produce accurate shape parameters to generate
shapes similar to the reference contours.

Table III compares our method with three nonrigid regis-
tration baselines in terms of the quantitative 3D mesh recon-
struction results on the test set. Our method demonstrates clear
advantages in each metric compared with DTTM and NrICP.
However, compared with NrCPD, our method is slightly
inferior in CD and EMD. This discrepancy arises because
the reference contour points are concentrated in sparse slice
locations and not distributed throughout the cardiac space.
We calculate the corresponding metrics between the reference
contour points and the predicted mesh vertices at these slice
locations. NrCPD excessively deforms the vertices of the
template mesh towards the reference contour points, resulting
in insufficient deformation of the vertices at other spatial
locations. Consequently, the deformation metrics of CD and
EMD are small. In contrast, the smoothness metric of Laplace
increases, indicating that the mesh surface generated by Nr-
CPD is very uneven and not ideal. In contrast, our method
balances deformation and smoothing to achieve a more even
mesh surface. Additionally, our method significantly reduces
the inference time for 3D surface reconstruction, making it
more efficient for experiments and applications.

Fig. 3 presents the 3D reconstruction results using different
methods for four test samples. The first column shows the
complete reference contour points to clearly demonstrate the
effect. In practice, LAX points between the top and bottom
SAX slices are not utilized in the deformation process. The
second through fourth columns display the reconstruction
results of three nonrigid registration baselines, while the
fifth column presents the results of our method. First, we
compare the fourth column (NrCPD) with the fifth column
(our method). The results of NrCPD confirm our previous
observations: NrCPD achieves more accurate deformation at
key slices but is insufficient at other positions, resulting in a
rough surface unsuitable for static and dynamic heart analysis.
Next, we compare the second, third, and fifth columns of
DTTM, NrICP and ours. Regarding smoothness, our method
is comparable to DTTM and superior to NrICP. Regarding
deformation accuracy, DTTM, NrICP, and our method all
achieve relatively accurate deformations in the main body of
the heart. However, at the basal and apical positions, the short-
axis image information is missing, and only a few reference
contour points from the long axis supervise the deformation.
This limitation hampers the accurate representation of the
shape in these regions. Consequently, the reconstruction results

of DTTM and NrICP at the basal and apical positions are
suboptimal. In contrast, our method, constrained by ARAP
loss, ensures the deformation is not too drastic or sharp, even
with limited supervision information at the base and apex. This
constraint helps maintain the original shape of the template
mesh in these regions, leading to a more accurate and smooth
reconstruction.

To thoroughly demonstrate the function of ARAP loss, Fig.
4 shows the results of three test samples with and without
ARAP loss. The first row displays the results without ARAP
loss, while the second row shows the results with ARAP loss.
The comparison indicates that the absence of ARAP loss leads
to drastic, sharp, non-rigid, and non-smooth deformation of
local areas relative to the template mesh, resulting in apparent
folds, protrusions, or concavities. In contrast, using ARAP
loss ensures that local deformation remains gentle, rigid, and
smooth relative to the template mesh, achieving a better overall
effect. In summary, our method effectively balances accuracy
and smoothness in deformation, especially achieving better
reconstruction results for the heart’s base and apex positions.

Table IV provides an indirect comparison of Dice, MCD and
HD2d between our method and three learning-based methods
on the slice segmentation level. All these three methods con-
duct segmentation accuracy evaluation between segmentation
contours and reference contours on 600 subjects (n=600) of
the UKBB dataset. We evaluate our method on 300 subjects
(n=300) containing 250 subjects of the UKBB dataset and 50
subjects of the private dataset. LVendo and LVepi represent
the endocardium and epicardium of myocardium repectively.
In Table IV, the mean Dice of our method for LVendo is 0.92,
which is slightly lower than the best Dice of 0.94 of Bai et
al. and Attar et al. The mean Dice of our method for LVepi

is 0.89, outperforming other methods. Therefore, in terms of
Dice, our method is comparable with other learning-based
methods, which indicates excellent agreement between manual
delineations and automated segmentations. As for MCD, the
mean values of MCD for LVendo and LVepi are 0.96 mm and
0.92 mm, which outperform Attar et al. by 0.10 mm and 0.21
mm, respectively. In terms of HD2d, the mean value of HD2d

for LVepi is 3.88 mm, which is the best compared with other
methods. However, the mean value of HD2d for LVendo is
3.94 mm, which is much higher than Bai et al. and Attar
et al. by about 0.8 mm, but the values of HD2d for both
LVendo and LVepi of our method are in the same level. The
possible reason may be that the endocardium is larger and has
more contour points than the epicardium, so the FCN used
by Bai et al. and the point distribution model used by Attar
et al., which focus on larger reception fields may show better
performance in the endocardium segmentation. In contrast, our
method models the relationship between the image features
and final displacements of vertices in a point-to-point manner,
so the distribution of target points does not affect the global
deformation much, resulting in the comparable HD2d of
endocardium and epicardium.

While our work does not require dense GT meshes for
training, we also perform an additional evaluation on a small
test set with ground truth dense meshes to demonstrate the
effectiveness of Slice2Mesh in the regions between slices.
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TABLE II
SEGMENTATION RESULTS OF THE SEGMENTATION MODULE ON THE TEST SET

Model Dice↑ IoU↑
SAX 2CH 4CH SAX 2CH 4CH

Unet [39] 0.883±0.154 0.881±0.132 0.880±0.126 0.793±0.164 0.790±0.147 0.789±0.114
TransUnet [46] 0.895±0.128 0.890±0.145 0.885±0.153 0.801±0.121 0.798±0.139 0.794±0.145

Ours 0.912±0.115 0.893±0.104 0.894±0.127 0.840±0.102 0.809±0.095 0.810±0.116

TABLE III
RESULTS OF 3D MESH RECONSTRUCTION ON THE TEST SET

Methods CD(mm)↓ EMD(mm)↓ HD3d(mm)↓ Dice↑ IoU↑ Laplace↓ Infer time(s)↓
DTTM [47] 5.924±3.129 1.341±0.460 12.419±3.254 0.852±0.054 0.746±0.080 0.072±0.007 55.052
NrICP [35] 6.386±3.555 1.422±0.525 12.344±3.514 0.838±0.069 0.728±0.100 0.252±0.019 71.519
NrCPD [48] 3.573±1.222 0.677±0.151 11.172±2.320 0.869±0.060 0.774±0.091 0.525±0.132 193.993

Ours 3.621±1.551 1.220±0.444 8.912±2.851 0.895±0.025 0.810±0.040 0.067±0.008 1.512

TABLE IV
SEGMENTATION RESULTS OF 3D MESH RECONSTRUCTION ON ALL SUBJECTS

Method Dice↑ MCD(mm)↓ HD2d(mm)↓
LVendo LVepi LVendo LVepi LVendo LVepi

Bai et al. [49](n=600) 0.94 ± 0.04 0.88 ± 0.03 1.04 ± 0.35 1.14 ± 0.40 3.16 ± 0.98 3.92 ± 1.37
Attar et al. [14](n=600) 0.94 ± 0.04 0.87 ± 0.03 1.06 ± 0.35 1.13 ± 0.35 3.15 ± 0.96 3.90 ± 1.29
Xia et al. [25](n=600) 0.88 ± 0.05 0.78 ± 0.09 1.86 ± 0.87 1.86 ± 0.82 4.74 ± 1.75 4.75 ± 1.76

Ours(n=300) 0.92 ± 0.03 0.89 ± 0.03 0.96 ± 0.26 0.92 ± 0.28 3.94 ± 1.20 3.88 ± 1.03

TABLE V
CLINICAL INDEXES ON HEALTHY AND MI DATASETS

Index UKBB(Healthy) Private(MI)
GT(n=4875) Bai et al.(n=600) Attar et al.(n=600) Xia et al.(n=600) Ours(n=250) GT(n=50) Ours(n=50)

LVEDV(ml) 144 ± 34 144 ± 32 148 ± 35 145 ± 32 142 ± 33 143 ± 32 143 ± 32
LVESV(ml) 59 ± 20 57 ± 18 62 ± 20 59 ± 17 56 ± 16 67 ± 28 71 ± 24
LVEF(%) 59 ± 6 61 ± 7 58 ± 6 59 ± 5 60 ± 8 53 ± 11 50 ± 11
LVM(g) 90 ± 25 89 ± 25 91 ± 24 89 ± 20 87 ± 20 119 ± 20 120 ± 21

The test set consists of 20 subjects with corresponding image
sequences. To generate the reference meshes, we first use
the rview tool6 to manually place six initial landmarks on
the images. Subsequently, we apply CIMAS7 (Cardiac Image
Multi-Atlas Segmentation pipeline) [50] to segment cardiac
MR image sequences at two time frames: ED and ES, using a
multi-atlas segmentation method. Given an input image and the
six initial landmarks, the CIMAS pipeline performs landmark
registration, image registration, and label fusion to produce
accurate segmentations and corresponding 3D dense meshes.
We treat these output meshes as the ground truth and calculate
metrics on dense mesh points across a test set of 40 samples.
Table VI presents the CD, EMD, and HD3d results of DTTM,
NrICP, NrCPD and out method. Our method outperforms other
three registration baselines across all three metrics, which
indicates that even in the regions between slices, where there
is no direct supervision during training, our method still has
advantages in generating surfaces that closely approximate the
left ventricular boundary.

E. Accuracy of cardiac function indexes
In this section, we report clinical cardiac function indexes of

our method on the UKBB subset (healthy) and private dataset
(MI). We processed and quantified volumes across all phases

6https://www.doc.ic.ac.uk/ dr/software/download.html
7https://github.com/baiwenjia/CIMAS

TABLE VI
RESULTS OF 3D MESH RECONSTRUCTION ON 40 TEST SAMPLES

CALCULATED ON DENSE MESH POINTS

CD(mm)↓ EMD(mm)↓ HD3d(mm)↓
DTTM [47] 7.577±3.416 1.442±0.503 14.219±3.648
NrICP [35] 7.661±3.573 1.468±0.542 13.859±3.267
NrCPD [48] 5.518±1.541 1.302±0.315 12.532±2.517

Ours 4.676±1.815 1.267±0.465 9.811±2.785

of 250 subjects in the UKBB subset and 50 subjects in the pri-
vate dataset and reported the following sets of indexes for each
subject: the LV end-diastolic volume (LVEDV), the LV end-
systolic volume (LVESV), the LV ejection fraction (LVEF),
and the LV myocardial mass (LVM). The assessment of these
indexes is based on the following volumetric measurements
[51].

• LVEDV(ml): the volume of blood in the LV cavity before
contraction.

• LVESV(ml): the volume of blood in the LV cavity at the
end of contraction.

• LVEF(%): the fraction of blood ejected from a ventricle
of the heart with each heartbeat.

LVEF =
LVEDV − LVESV

LVEDV
(12)

• LVM(g): the mass of the LV myocardium. The LVM is
calculated by multiplying the myocardium volume by the

https://www.doc.ic.ac.uk/~dr/software/download.html
https://github.com/baiwenjia/CIMAS
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Fig. 2. Example segmentation results for short-axis slices at the base, mid and apex positions. The GT segmentation masks are red and the
segmentation contours by our method are green.

density of the muscle tissue (1.05 g/cm3).

When calculating the volume, we begin by extracting con-
tours that align with the intersection between our 3D triangular
meshes and the SAX image slices. Afterward, we apply
Simpson’s integration method. This involves approximating
the volume of the cardiac 3D structure by summing the
areas enclosed within the 2D segmentation contours and then
multiplying by the inter-plane spacing.

Table V shows the cardiac function indexes on two datasets.
For the UKBB subset (healthy), we compare our results with
Bai et al. [49], Attar et al. [14], Xia et al. [25], and the refer-
ence values provided by manual segmentation from Petersen et
al. [52]. For the private dataset (MI), our results are compared
with the reference values provided in the clinical reports
from the hospital. Our observations reveal that for the UKBB
subset, our clinical indexes exhibit minimal deviations from
the ground truth values and demonstrate comparability with
the other methodologies despite a smaller subject amount. For
the private MI dataset, our proposed method aligns excellently
with the ground truth values for LVEDV and LVM indexes. In
the case of LVESV and LVEF indexes, the differences are also
within acceptable bounds. A comparative analysis of healthy
and MI subjects indicates that MI is associated with heightened
LVESV and LVM and diminished LVEF, consistent with the
findings of Xia et al. [25], which highlight cardiac remodeling
and enlargement in MI patients.

F. 3D mesh reconstruction from incomplete contours

We further evaluate the robustness of our method to incom-
plete data in sparse 2D contours used for 3D mesh reconstruc-
tion. We randomly remove 1, 2, or 3 SAX image slices when
evaluating the model to see the influences with different SAX
slices removed. Additionally, to address the common issue
encountered in routine CMR imaging of missing apical/basal
information, we remove 2 LAX slices and keep SAX slices to
see the results. To show the global effect of incomplete slices,
we add the LV volume (LVV) as metrics for each evaluation
setting.

The quantitative and qualitative results with different slices
of data during inference are shown in Table VII and Fig. 5,
respectively. Based on the results from Table VII, we can
see that as more SAX slices are removed, the reconstruction
metrics (CD, EMD, HD3d, Dice, and IoU) all decrease. This
is because removing more image slices leads to fewer image
features being used to deform the mesh, resulting in poorer
deformation in areas without image information. However,
despite the incomplete SAX slices having lower metrics com-
pared to complete SAX slices, we can observe that the LVV
does not change significantly with different numbers of SAX
slices. This suggests that the overall shape of the heart can
still be reconstructed effectively. By comparing columns from
2 to 5 in Fig. 5, we can find that the shapes basically maintain
consistency and the surfaces are all smooth, indicating that our
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Fig. 3. Qualitative 3D reconstruction results of the myocardium by different methods for 4 test samples. The first column is the reference contour
points. The second to fourth columns are the reconstruction results of the baseline methods, and the fifth column is the reconstruction results of
our method.

Fig. 4. Different results of three test samples with or without ARAP loss.
The first row is the results without ARAP loss, and the second row is the
results with ARAP loss.

method can generate accurate reconstructions of cardiac shape
even in the presence of missing information. By comparing
rows 1 and 5 in Table VII, it can be found that removing 2

LAX slices affects the performance of mesh reconstruction.
However, our approach can still achieve a high-quality recon-
struction effect in the basal and apical positions, as shown in
columns 2 and 6 of Fig. 5, which is because the ARAP loss
tries to keep the template shape in the basal and apical area
even though there is no image information.

The robustness of our approach to missing slices implies
we can reconstruct high-quality cardiac meshes using fewer
annotated slices. This provides avenues to reduce scan time in
the future.

G. 4D mesh generation and MI classification
Myocardial infarction is a prevalent and high-risk cardio-

vascular disease. Worldwide, about 15.9 million myocardial
infarctions occurred in 2015 [53]. The hearts of healthy
individuals exhibit regular and strong systoles and diastoles.
In contrast, the hearts of MI patients display abnormal and
weak movements. These differences can be better observed
by analyzing 4D (3D+T) cardiac meshes with temporal infor-
mation rather than just considering minimal wall thickness or
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TABLE VII
QUANTITATIVE RESULTS WITH INCOMPLETE SLICES OF DATA ON THE TEST SET

Methods CD(mm)↓ EMD(mm)↓ HD3d(mm)↓ Dice↑ IoU↑ Laplace↓ LVV(ml)
All slices 3.621±1.551 1.220±0.444 8.912±2.851 0.895±0.025 0.810±0.040 0.067±0.008 115±20

-1 SAX slice 4.406±1.765 1.307±0.430 9.064±2.737 0.880±0.028 0.797±0.045 0.067±0.008 114±22
-2 SAX slice 5.604±2.210 1.416±0.405 9.396±2.586 0.863±0.035 0.761±0.053 0.066±0.009 114±23
-3 SAX slice 6.818±2.598 1.545±0.430 9.649±2.356 0.845±0.043 0.734±0.064 0.066±0.009 112±23

No LAX slices 5.417±2.455 1.452±0.651 10.184±2.704 0.883±0.031 0.791±0.048 0.064±0.008 117±17

Fig. 5. 3D mesh reconstruction results with incomplete input during inference for three test samples. The first column shows the reference contour
points and the second column shows the predicted shapes with all image slices. The third to fifth columns are the reconstruction results with
different numbers of SAX slices removed, and the sixth column is the reconstruction results with LAX slices removed. The CD, HD, Dice and LVV
are shown on the bottom of each sample. The Dice in red and LVV in blue do not change much as the number of slices decreases, demonstrating
the robustness of our method.

deformation in a single cardiac cycle. Therefore, our method
can be utilized to generate 4D meshes first and serve as a base
for downstream MI classification tasks.

Firstly, we apply our method to 4D cine data consisting of
images from multiple frames over the cardiac cycle for each
subject to analyze the dynamic cardiac function. Accurate 4D
cardiac mesh models can provide an intuitive visualization of
cardiac motion and quantitative strain analysis to aid clinical
practice, such as disease diagnosis and surgical planning. To
this end, we employ the proposed method to reconstruct the
3D surface mesh at each frame of the cardiac cycle. We obtain
all frames of all 50 subjects with different degrees of MI from
the private dataset as abnormal data (label 1), randomly get 50
normal subjects with all frames in the UKBB dataset as normal
data (label 0), and perform cardiac surface mesh reconstruction
on the 4D data of these 100 subjects. Fig. 6 shows the cardiac
reconstruction results for 9 frames of a 50-frame cardiac cycle
for a normal subject.

Then, the 4D cardiac reconstruction results are classified

TABLE VIII
SVM CLASSIFICATION RESULTS ON 99 TEST SUBJECTS WITH

DIFFERENT REDUCED DIMENSIONS

Dimension Accuracy(%) Recall(%) Precision(%) F1(%)
2 63.6 59.2 64.4 61.7
3 61.6 46.9 65.7 54.7
4 86.9 91.8 83.3 87.4
5 79.8 91.8 73.8 81.8
6 84.8 91.8 80.3 85.7

into MI symptoms to distinguish MI patients from normal sub-
jects. Specifically, we calculate the inter-phase displacement
of the corresponding mesh vertices along the cardiac cycle,
flatten the vectors for each subject, and conduct principal
components analysis (PCA) with the linear kernel to reduce
the dimensions. Using these 100 subjects of data, we train a
linear SVM (Support vector machine) model to classify the
symptoms. To evaluate the trained SVM model, we use a test
set comprising 49 additional abnormal subjects from Beijing
Anzhen Hospital and 50 additional normal subjects from the
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Fig. 6. 4D case study: Reconstruction results of 9 frames in the cardiac cycle of a normal subject, varying according to the process of diastole –
systole – diastole.

TABLE IX
THE IMPACT OF THE CD LOSS CALCULATION METHOD AND FEATURE SAMPLING METHOD ON RECONSTRUCTION RESULTS

Methods CD(mm)↓ EMD(mm)↓ HD(mm)↓ Dice↑ IoU↑ Laplace↓
TotalCD 3.716±1.630 1.220±0.396 9.081±3.163 0.892±0.025 0.806±0.041 0.065±0.008

PS 3.887±1.652 1.249±0.392 8.934±2.903 0.889±0.027 0.802±0.044 0.067±0.008
MNS 3.832±1.608 1.229±0.388 8.959±2.965 0.888±0.027 0.800±0.043 0.067±0.008

SeparateCD/WNS(Ours) 3.621±1.551 1.220±0.444 8.912±2.851 0.895±0.025 0.810±0.040 0.067±0.008

Fig. 7. The visualization results of the 4-dimensional data by using t-
SNE to reduce the dimension to 2. Red scatters are normal subjects,
and blue scatters are abnormal subjects with myocardial infarction.

UKBB dataset. We tried several dimensions to reduce to in
PCA and finally got the best results with 4 dimensions. Table
VIII shows the classification results of the 99 test subjects
and reports the accuracy, recall rate, precision and F1 value
at different reduced dimensions. At dimension 4, the four
metrics reach the best level, and the recall(sensitivity) rate is
91.8%, which means that the SVM model can classify 45/49
abnormal subjects. Fig. 7 shows the visualization results of
the 4-dimension data by using t-SNE (t-distributed Stochastic
Neighbor Embedding) [54] to reduce the dimension to 2. Red
scatters are normal subjects, and blue scatters are abnormal
subjects with myocardial infarction. We can see that the two
kinds of scatters can be easily separated by a linear function.
This indicates that the trained SVM model can successfully
classify the myocardial infarction symptoms of 4D cardiac
reconstruction results and verify our method’s accuracy and
effectiveness for 3D cardiac reconstruction. We also compare
our MI classification method based on 4D meshes displace-
ment with a segment-level deep-learning-based baseline [55]
and the traditional classification method of minimal wall
thickness. The former one extracts local and global motion
features from 2D images using a recurrent neural network
and an optical flow method and reaches a sensitivity of 89.8%

(44/49) on midcavity segments, which is a little lower than
ours, demonstrating our method’s superiority. The latter one
calculates the minimal wall thickness across all phases for each
subject and conducts the classification by logistic regression,
reaching the sensitivity of 85.7%(42/49). The gap may be
because the displacement of mesh vertices over time, which
is a vector, has more latent information to be used than the
minimal wall thickness, which is a scalar.

H. Ablation study

An ablation study is performed to analyze the contribution
of different components of our method. Table IX shows the
influence of the calculation method of CD loss and the feature
sampling method on the reconstruction results. TotalCD means
we calculate the CD loss of the endocardium and epicardium
as a whole, while SeparateCD means we calculate the CD
loss of the endocardium and epicardium separately. PS is
point sampling, MNS is mean neighborhood sampling, and
WNS stands for weighted neighborhood sampling. Firstly,
comparing the first and fourth rows, SeparateCD outperforms
TotalCD in all metrics except for the slightly worse Laplacian
smoothness metric. Then, comparing the second, third, and
fourth rows, PS, MNS, and WNS gradually increase in all
metrics, indicating that dynamically learning the weights of
pixels in the neighborhood can sample the image features more
accurately to deform the mesh more precisely.

IV. DISCUSSION AND CONCLUSION

In this study, we present Slice2Mesh, a novel image-
based 3D surface reconstruction method for the left ventricle
that effectively generates accurate and smooth 3D meshes
using sparse image slices. Slice2Mesh surpasses three tra-
ditional point cloud registration methods on both accuracy
and smoothness of the deformation. The clinical function
indexes evaluated on the UKBB test set also underscore the
method’s precision. One key advantage of Slice2Mesh lies
in its efficiency as a supervised method that does not rely
on 3D cardiac meshes as references. By requiring only 2D
segmentation labels to derive sparse contour points, it reduces
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the computational burden and error introduced by generating
3D reference meshes, offering a streamlined alternative to ex-
isting deep learning and traditional shape reconstruction tech-
niques. We further demonstrate that our proposed approach
can reconstruct precise 3D cardiac meshes even when several
SAX and LAX slices of images are missing, showcasing our
model’s robustness and the effectiveness of the introduced
ARAP loss, which plays a critical role in ensuring stable
reconstructions even under incomplete data, reinforcing the
versatility of the method. Moreover, the method can produce
topology-consistent and feature-corresponding 3D shapes by
consistently mapping mesh vertices on the templates to dif-
ferent shapes of the same heart. Consequently, this method
can display fluent and dynamic changes of the heart and is
effective in identifying subjects suffering from myocardial
infarction, potentially enabling the efficient construction of a
4D dynamic heart model that captures the motion of a beating
heart from time-series cine data. The robustness of Slice2Mesh
in reconstructing 3D meshes from sparse data, combined with
its potential to integrate with 4D dynamic models, suggests
that it could serve as a powerful tool for clinical applications
requiring detailed cardiac modeling.

However, some limitations and challenges still remain.
Since the method is supervised by contour points derived from
segmentation labels, the misalignment between slices during
data acquisition may affect the reconstruction quality. Al-
though we apply contour-based misalignment correction, this
process is not flawless, and residual misalignments may impact
the smoothness of the reconstructed surfaces, particularly in
the basal and apical regions. Addressing these limitations in
future work could involve more advanced techniques, such
as intensity-based or deep learning-based alignment correc-
tions. Moreover, the current pipeline reconstructs 3D meshes
individually for each phase using ICP registration with only
one initial template, which could result in suboptimal mesh
deformation and dynamic motion capture. Using multiple tem-
plates to select from may improve the deformation accuracy.
Incorporating interframe image or mesh registration would
likely improve the continuity and accuracy of dynamic heart
motion.
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