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Genome-wide association analysis of left
ventricular imaging-derived phenotypes
identifies 72 risk loci and yields genetic
insights into hypertrophic cardiomyopathy

Caibo Ning1,2,3,11, Linyun Fan1,2,3,11, Meng Jin4,11, Wenji Wang5,11, Zhiqiang Hu5,11,
Yimin Cai 1,11, Liangkai Chen 6,11, Zequn Lu1, Ming Zhang1, Can Chen1,
Yanmin Li1, Fuwei Zhang1,WenzhuoWang1, Yizhuo Liu1, ShuoniChen1, Yuan Jiang1,
Chunyi He1, Zhuo Wang1, Xu Chen1, Hanting Li1, Gaoyuan Li1, Qianying Ma1,
Hui Geng1, Wen Tian1, Heng Zhang1, Bo Liu 4, Qing Xia5, Xiaojun Yang7,
Zhongchun Liu 8, Bin Li1, Ying Zhu1,2,3,9, Xiangpan Li2, Shaoting Zhang 5,10 ,
Jianbo Tian 1,2,3,9 & Xiaoping Miao 1,2,3,9

Left ventricular regional wall thickness (LVRWT) is an independent predictor
of morbidity and mortality in cardiovascular diseases (CVDs). To identify
specific genetic influences on individual LVRWT, we established a novel deep
learning algorithm to calculate 12 LVRWTs accurately in 42,194 individuals
from the UK Biobank with cardiac magnetic resonance (CMR) imaging.
Genome-wide association studies of CMR-derived 12 LVRWTs identified 72
significant genetic loci associated with at least one LVRWT phenotype
(P < 5 × 10−8), which were revealed to actively participate in heart development
and contraction pathways. Significant causal relationships were observed
between the LVRWT traits and hypertrophic cardiomyopathy (HCM) using
genetic correlation and Mendelian randomization analyses (P <0.01). The
polygenic risk score of inferoseptal LVRWT at end systole exhibited a notable
association with incident HCM, facilitating the identification of high-risk
individuals. Thefindings yield insights into thegenetic determinants of LVRWT
phenotypes and shed light on the biological basis for HCM etiology.

The critical role of left ventricular (LV) structure and function in
adversely affecting the prognosis of individuals is increasingly
acknowledged. Changes in LV structure and function have been
associated with acute myocardial infarction1, heart failure2 and
mortality3. Likewise, the LV wall thickness is an independent pre-
dictor of morbidity and mortality of hypertrophic cardiomyopathy
(HCM)4, diastolic dysfunction5, and ventricular arrhythmias6. Various
LV regional wall thicknesses (LVRWT) occurred with different clinical
implications7,8, and its quantitative analysis is of great significance for
the diagnosis of cardiovascular disease (CVD)9. Hence, LVRWT

serving as intermediate phenotypes for CVD is needed for timely
detection.

Cardiovascular magnetic resonance (CMR) is one of the most
popular medical imaging modalities to quantify the LV phenotypes
due to its noninvasive and versatile nature10. However, the highly
variable cardiac structures across different subjects and quantification
tasks of small targets pose the biggest challenge to accurate estima-
tions of cardiac wall thicknesses in large investigations11. As a result,
such a large-scale genome-wide association (GWAS) study of the
LVRWT imaging phenotype has not been performed to date. Previous
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research on the genetic architecture of CMR-derived traits con-
centrated primarily on LV volumetric and functional metrics such as
stroke volume and ejection fraction2,12. To solve this issue, we estab-
lished a novel deep-learning framework named Myocardial Segmen-
tation and Measurement Method (MSMM) to precisely estimate
LVRWT. The UK Biobank (UKB), one of the largest population imaging
studies, has acquired both high-quality standardized CMR examina-
tions and genotype data13, offering a tremendous opportunity to
investigate the unknown genetic determinants of LVRWT traits.

In this study, we aimed to investigate the genetic basis of 12
LVRWTs: anterior, anteroseptal, inferoseptal, inferior, inferolateral, and
anterolateral LVRWT at end diastole and end systole. Using a deep
learning-based method to segment LV structure and design an auto-
maticmeasurement algorithm toquantifymyocardialwall thickness,we
performed GWASs on 12 LVRWT traits (all derived from the mid-cavity
slice with half obtained during end-systole (ES) phase and half during
end-diastole (ED) phase) in 42,194 UKB participants. We then evaluated
the putative causal relationships between the LVRWT traits and CVDs
using genetic correlation and Mendelian randomization (MR) analyses.
Finally, we established the polygenic risk score (PRS) of each LVRWT
trait, and validatedwhether the LVRWT-PRSs have the ability to identify
HCM in 439,981 individuals without CMR imaging. Overall, this study
substantially enhances our knowledge of the genetic basis of LVRWT
and may provide valuable risk stratification guidance to identify high-
risk sub-populations in individualized HCM prevention.

Results
Segmentation of left ventricle with deep learning
TheMSMMprocedureweestablished tomeasure the thicknesseswere
presented in Fig. 1. To achieve state-of-the-art performance in seg-
mentation tasks, we trained the deep learning model using the Auto-
mated Cardiac Diagnosis Challenge (ACDC) dataset14,15 annotated by
one clinical expert, which has a total of 1902 annotated images. We
randomly selected 1420 short axis images for training, 100 short axis
images for validation and 382 short axis images for testing. Within the

382 testing images, 80 images belong to the two mid-cavity slices.
Since only the mid-cavity slice quantification results were used for the
subsequent analysis, we evaluated the methods on two mid-cavity
slices of each case to ensure a consistent comparison. Moreover, we
included 500mid-cavity images from theUKBdataset for independent
evaluationbecause thatGWASs areperformedon theUKBdataset. The
Deep Layer Aggregation based deep learningmodel16,17 as the network
architecture (DLANet) was trained from 1420 ACDC images. The Deep
Layer Aggregation (DLA)-based deep learning model as the network
architecture was trained from these data. The trained deep learning
model was then used to output LV segmentation results in the UKB
imaging substudy of over 45,000 people18. Detailed information about
model training, as well as quantitative and qualitative results, can be
found in the “Methods“ section and Supplementary Methods.

Measurement of high-quality left ventricular regional wall
thicknesses
We applied a measurement-based quantification method to post-
process the deep learning output tomeasure the LVRWT traits. A total
of 45,353participants with CMR imagingwere identified for analyses in
the UKB. For these individuals, 6 LVRWT phenotypes at end systole
[end-systolic anterior (ES-A), end-systolic anteroseptal (ES-AS), end-
systolic inferoseptal (ES-IS), end-systolic inferior (ES-I), end-systolic
inferolateral (ES-IL), end-systolic anterolateral (ES-AL) LVRWT] and 6
LVRWT phenotypes at end diastole [end-diastolic anterior (ED-A), end-
diastolic anteroseptal (ED-AS), end-diastolic inferoseptal (ED-IS),
end-diastolic inferior (ED-I), end-diastolic inferolateral (ED-IL), end-
diastolic anterolateral (ED-AL) LVRWT] were available. Following the
exclusion of poor image quality and sample quality-control proce-
dures, 42,194 individuals free fromadiagnosis ofmyocardial infarction
or heart failure remained (Supplementary Fig. 1). The average age of
the cohort at the time of imaging visit was 64.1 years, and 47.3% were
men at end systole and 47.2% at end diastole (Supplementary Table 1).
The mean and standard deviation of 12 LVRWT phenotypes are
reported in Supplementary Table 2. We next sought to estimate the
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Fig. 1 | Left ventricular wall thicknesses measurement with deep learning. A
complete and novel framework named Myocardial Segmentation and Measure-
ment Method (MSMM) for the quantification of myocardial wall thicknesses. a The
original CMR images for end systole and end diastole. b The segmentation network
architecture is based on the Deep Layer Aggregation (DLA). c Deep learningmodel
that has been trained segments the initial CMR images, producing pixel-by-pixel
output. Blue: left ventricular cavity, green: left ventricularmyocardium.dThe polar

representation of the segmentation contour is used to approximation an under-
lying function of direction anglemapped to distance with the key points for the left
ventricular structure. e The function is applied to a set of uniformly spaced direc-
tion angles in the neighborhood of the target direction and take the average for a
robust quantification. IS inferoseptal, I inferior, IL inferolateral, AL anterolateral, A
anternor, AS anteroseptal.
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phenotypic correlations of LVRWT traits. The strong positive pheno-
typic correlations were observed between regions of the same cardiac
cycle phases (r2 = 0.82 between ES-IL and ES-AL), and the end-diastolic
LVRWT phenotypes and end-systolic LVRWT phenotypes were mod-
estly positively correlated with one another (Supplementary Fig. 2a),
which is not unexpected, given their firm physiological associations.
Furthermore, to gain insight into the dimensionality of the data, we
conducted a principal component analysis (PCA) and identified that
utilizing five principal components explained over 90% of the varia-
bility in the LVRWT measurements (Supplementary Fig. 2b).

Genome-wide association studies of left ventricular regional
wall thicknesses
To understand the common genetic basis for variation in myocardial
wall thickness, we performed a series of GWAS on 12 LVRWT traits
within each cohort. Firstly, due to the nonnormal distribution, we per-
formed the rank-based inverse normal transformation of the residuals
of LVRWTphenotypes (Supplementary Fig. 3). Therewasnoevidenceof
confounding frompopulation stratificationor cryptic relatedness in our
GWAS analyses, as demonstrated by low genomic inflation factor
(λ = 1.050–1.099, Supplementary Fig. 4). Furthermore, we identified a
total of 72 genome-wide significant variants associated with the 12
LVRWT traits (P < 5 × 10−8), including 16 variants for IS, 2 variants for I, 7
variants for IL, 10 variants for AL, 3 variants for A and 7 variants for AS at
end systole stage; 5 variants for IS, 3 variants for I, 3 variants for IL, 4
variants for AL, 3 variants for A and 9 variants for AS at end diastole
stage, respectively (Fig. 2 and Supplementary Data 1). Interestingly,
there have 10 genetic variants associated with multiple LVRWT traits,
resulting in 62 unique variants associated with the 12 LVRWT traits; for
example, rs7928419 in SPI1 at 11p11.2 reached genome-wide significance
in ES-IS, ED-IS and ED-AS (PES-IS = 1.0 × 10−12, PED-IS = 1.3 × 10−9,
PED-AS = 1.2 × 10−8, Supplementary Fig. 5). Furthermore, following thefive
PCs correction formultiple tests,weobserved that 47 variants remained
significant (P < 1.0 × 10−8, Supplementary Data 1).

Functional characterization for risk variants of 12 LVRWT traits
The LVRWT GWAS loci harbored a total of 6345 candidate variants in
linkage disequilibrium (LD, r2 > 0.6) with 62 lead variants. To char-
acterize the features for risk variants of 12 LVRWT traits, we first gen-
erated the control variants set and functionally defined the genomic
position distribution of variants via SnpEff19. Compared with control
variants, we found risk variants were significant enriched within intron
region, gene upstreamand downstream regions, and intergenic region
(Fig. 3a, b). We next investigated whether risk variants are enriched
among genetic regulatory elements. We observed significant enrich-
ments for risk variants of 12 LVRWT traits within the histone marks of
promoters [H3K4 trimethylation markers (H3K4me3)], enhancers
[H3K4 monomethylation marks (H3K4me1), H3K27 acetylation marks
(H3K27ac) and H3K36 trimethylation markers (H3K36me3)], and
transcriptional factor binding sites (TFBSs), while significant depletion
among repressive transcription [H3K9 trimethylation markers
(H3K9me3)] (Fig. 3c). Furthermore, to examine the characteristics for
risk variants of 12 LVRWT traits in the context of their potential con-
tribution to CVDs susceptibility, we conducted enrichment analyses
using the data of GWAS summary statistics from 11 selectedCVDs traits
(Supplementary Data 2). As a result, risk variants of 12 LVRWTs were
observed significantly enriched among CVDs GWASs loci (Fig. 3d). To
sum up, these results indicated that risk variants may regulate the
expression of genes by activating chromatin state, and might result in
an increased CVDs incidence.

Identification and functional annotation of susceptible genes
associated with left ventricular regional wall thicknesses
We further sought to identify candidate genes influencing LVRWT
phenotypic variation using an integrative approach supported by

multiple lines of evidence (Supplementary Fig. 6). Based on the
downstream analysis of the discovery GWAS summary statistics, for
end diastole and end systole, respectively, 31 genes and 21 genes were
identified by position (±1Mb of the lead variant) (Supplementary
Data 1); 58 genes and 50 genes were discovered by expression quan-
titative trait locus (eQTL) mapping (Supplementary Data 3); and 45
genes and 25 genes were identified by transcriptome-wide analysis
(TWAS) (Supplementary Data 4–9). Besides, Multi-marker Analysis of
GenoMic Annotation (MAGMA) gene-based analyses yielded 55 and 44
significant genes for end diastole and end systole, respectively, (mean
χ2 statistics, P < 2.64 × 10−6) (Supplementary Data 10). We combined all
of genes annotated using the fourmethods. As several loci were shared
by multiple traits; counting each locus only once, we totally identified
127 candidate genes at end systole and 95 candidate genes at end
diastole, respectively (Supplementary Data 11). Notably, ALPK3 was
annotated by the four methods, and rs3803405 in proximity to ALPK3
was the most significant variants in this study. MYBPC3, which was
identified by the MAGMA analysis for inferoseptal LVRWT at end sys-
tole, is one of the two most well-known HCM causal genes20. ALPK321,
NMB22, and WNT323 loci, which are significant candidate genes that
have been linked to inherited CVDs, were shared across most LVRWT
traits (Supplementary Fig. 7).

To further dissert the potential function of the candidate genes,
we characterized thebiological pathways associatedwith the 127 genes
at end systole and 95 genes at end diastole. The GO analyses demon-
strated that the candidate genes are remarkably enriched in the bio-
logical pathways correlated with the heart development, heart
contraction, and cardiac muscle cell development, which are essential
for cardiac remodeling (Fig. 4a, b and Supplementary Data 12). The
tissue expression analyses were performed separately for 54 specific
tissue types, and tissues from the heart atrial appendage and heart left
ventricle showed the most significant P value (P = 2.64 × 10−6) in most
LVRWT traits (Fig. 4c, d and Supplementary Data 13). In summary,
these findings significantly advance our understanding of the genetic
basis of LVRWT phenotypes and suggest that candidate genes encode
essential proteins involved in the construction and maintenance of
sarcomeric infrastructure.

Heritability and genetic correlation of left ventricular regional
wall thicknesses
We next estimated the proportion of LVRWT phenotypic variation
attributable to the genotypes by the variance component analyses.
The highest genome-wide variant heritability estimates were
observed for inferoseptal LVRWT at end systole (ED-IS, at 28%), fol-
lowed by inferoseptal LVRWT at end diastole (ED-IS, at 25%), while
heritabilities were lower for anterior and anterolateral LVRWT at end
diastole, which had a heritability of 17% (Fig. 5a). We observed sig-
nificantly genetic correlations between LVRWT traits ranging from
high (rg = 0.97 between ES-IL and ES-A) to low (rg = 0.42 between ES-A
and ED-AS; Fig. 5a). Strong positive genetic correlations were gen-
erally found between regions of the same cardiac cycle phases and
moderate correlations between regions of the different cardiac cycle
phases, which may reflect genetic effects acting on the development
of the cardiac wall.

Due to the interdependent nature of LVRWTandLVchambers and
the importance of wall thickness remodeling, we first sought to
quantify the strength of their genetic correlations by linkage dis-
equilibrium score regression (LDSC) analyses using our LVRWT sum-
mary statistics and the summary data from a recently published LV
GWAS12. The LVRWT traits hadhighlypositive genetic correlationswith
LV volumetric and functional traits such as LV ejection fraction (LVEF)
and stroke volume (SV) (rg range: 0.16–0.60), and negative genetic
correlations with LVRWT traits were observed between LV end-
diastolic volume (LVEDV), LV end-systolic volume (LVESV) and the
body-surface-area indexed versions of these traits, including LVEDVi
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Fig. 2 | Manhattan plots of genome-wide association studies results for 12
LVRWT phenotypes. Manhattan plots show the chromosomal position on the x-
axis and the −log10(P) on the y-axis for each LVRWT phenotype. The black dashed
line indicates the genome-wide significance threshold at P < 5 × 10−8, while the red
dashed line represents the significance level after multiple corrections

(P < 1.0 × 10−8). Loci that contain variants with P < 1 × 10−8 were labeled with the
name of the nearest gene. P values are two sided based on the chi-squared test
statistics in BOLT-LMMsoftware. LVRWT LV regional wall thickness, IS inferoseptal,
I inferior, IL inferolateral, AL anterolateral, A anternor, AS anteroseptal.
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and LVESVi (rg range: −0.58 to −0.13), which emphasized their strong
physiological connections (Fig. 5b and Supplementary Data 14).
Additionally, we also investigated the genetic correlations between the
12 LVRWT traits and cardiac measurements that could mediate the
CVDs progression. The LVRWT traits were highly positively connected
with traits such as heart rate, diastolic and systolic blood pressure (rg
range: 0.11–0.45, Fig. 5b and Supplementary Data 14). Collectively,
thesefindings support the justification for investigating the genetics of
LVRWT traits as a complementary gateway to understanding the dri-
vers of cardiac remodeling.

Genetic correlation analyses between left ventricular regional
wall thicknesses with cardiovascular diseases
Toexamine sharedgenetic effects betweenLVRWT traits andCVDs,we
performed genetic correlation analyses with GWAS summary statistics
from 11 selected CVDs traits. As expected, we observed statistically
positive genetic correlations of 12 LVRWT traits with CVDs such as
HCM, hypertension, pulmonary hypertension, chronic ischemic heart
disease, and ischemic stroke. Anterior LVRWT at end diastole had the
highest genetic correlation estimate with HCM than other LVRWT
traits (ED-A: rg = 0.65, P = 7.0 × 10−4). For inferoseptal LVRWT, we
observed positive genetic correlations with HCM at both end systole
and end diastole (ES-IS: rg = 0.52, P = 1.4 × 10−3; ED-IS: rg = 0.42,
P = 6.8 × 10−3). Furthermore, HCM as the disease had the highest

genetic correlation estimates with LVRWT than other CVDs (rg range:
0.37–0.65) (Fig. 5c and Supplementary Data 15). In full, these findings
of the genetic correlations between LVRWT traits with CVDs provide
quantitative support for genetic overlap.

Mendelian randomization of left ventricular regional wall
thicknesses exposures and cardiovascular diseases
The genetic correlations between 12 LVRWT traits and CVDs risk led us
to the hypothesis that the increased LVRWT traits are causally asso-
ciated with CVDs. We then tested such potential causality between 12
LVRWT exposures and CVDs outcomes using two-sample Mendelian
randomization (MR). Although heterogeneity and the number of var-
iants in the exposure-outcome effects are limitations, the findings of
the inverse-variance-weighted method and sensitivity analyses sup-
port causal relationsbetween 10of 12 LVRWT traits and increasedHCM
risk (beta range: 0.45 to 3.10, P <0.01) (Fig. 6 and Supplementary
Data 16). We also found robust support for the causal effects of
inferolateral, anteroseptal, and anterior LVRWT on cardiomyopathy at
end systole and end diastole (P <0.01). However, there is no statisti-
cally significant effect on hypertension, angina pectoris, myocardial
infarction, chronic ischemic heart disease, and ischemic stroke
(P > 0.05). Taken together, these findings suggest that the genetic
relationships between LVRWT traits and HCM may partly reflect
underlying causal processes.
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Fig. 3 | Functional characterization for risk variants of 12 LVRWT traits. a Pie
chart represents theproportions for risk variants of 12 LVRWT traits annotatedwith
each functional category (intron region, gene upstream and downstream regions,
intergenic region, 3′-untranslated region (UTR), 5′-UTR and exon region).
b Enrichment analyses for risk variants of 12 LVRWT traits in each different func-
tional type of variants. P values were calculated by two-tailed Fisher’s exact test and
bars indicate 95% confidence intervals (CIs). c Enrichment analyses for risk variants
of 12 LVRWT traits among epigenomic marks, such as H3K4 monomethylation

marks (H3K4me1), H3K4 trimethylation marks (H3K4me3), H3K27 acetylation
marks (H3K27ac), H3K36 trimethylation marks (H3K36 me3), H3K9 trimethylation
markers (H3K9me3) and transcriptional factor binding sites. P values were calcu-
lated by two-tailed Fisher’s exact test and bars indicate 95% CIs. d Enrichment
analyses for risk variants of 12 LVRWT traits among 11 CVDs risk loci. P value was
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Fig. 4 | Pathway enrichment and tissue enrichment for susceptible genes
associated with LVRWT. a, b Pathway enrichment analyses of Gene Ontology
terms were performed at http://kobas.cbi.pku.edu.cn. Significantly enriched GO
terms (P <0.05, two-sided) were identified from the analyses of significant genes
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diastole.
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Polygenetic risk scores influence the risk for incident hyper-
trophic cardiomyopathy
For each of the 12 LVRWT traits, we derived PRSsweighting the genetic
dosage by the effect size of independent genetic variants located at
autosome (P < 1 × 10−5) from each LVRWT traits GWAS (Supplementary
Data 17). We investigated whether PRSs could discriminate the 12
LVRWT traits. As expected, participants with a higher PRS tended to
have thicker LVRWT for all 12 LVRWT traits, especially for inferoseptal

LVRWT at end systole and end diastole (Fig. 7a, b and Supplementary
Figs. 8a, b–12a, b), suggesting that the PRSs yielded favorable dis-
crimination for the LVRWTs.

Having established the causal effects of LVRWT traits on HCM, we
then sought to evaluate whether a genetic predisposition to LVRWT
traits is associated with incident HCM in the remaining 439,981 indi-
viduals without CMR imaging data. We found that the PRS tertiles of
inferoseptal LVRWT at end systole were associated with higher risk of
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(P <0.05) are shown. b Genetic correlations between 12 LVRWT traits and 10 car-
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HCM (hazard ratio (HR)ES-IS = 1.69, 95% CI = 1.33–2.15, P = 2.31 × 10−5 for
high tertile vs. low tertile, Supplementary Data 18). As expected, the
PRS of inferoseptal LVRWT at end systole exhibited effective risk
stratification within the HCMpopulation (Fig. 7c).Moreover, we found
that the PRS of inferoseptal LVRWT at end systole enabled a clear
distinction between incident HCM cases and healthy controls (Fig. 7e).
In addition, we found the similar results in inferolateral, anterolateral,

anterior and anteroseptal LVRWT at end systole, and inferior, infer-
olateral and anterior LVRWTat enddiastole (Supplementary Figs. 8d, f,
9c–f, 10c, e, 11c–f and 12c, e). Regrettably, the other 4 LVRWT traits
(inferior LVRWT at end systole, and inferoseptal, anterolateral, and
anteroseptal LVRWT at end diastole) did not exhibit strong perfor-
mance in identifying individuals at elevated risk (Fig. 7d, f and Sup-
plementary Figs. 8c, e, 10d, f and 12d, f). We also assessed the
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correlation between the constructed PRS for LVRWT traits and 10
other CVDs (Supplementary Data 18). We calculated the C-statistic for
our HCM PRSs and noticed that it is not sufficiently satisfactory.
However, a slight improvement is noted after further integrating the
relevant PRS with clinical risk factors, as depicted in Supplementary
Fig. 13. Despite the modest C-statistic values, this enhancement
underscores the efficacy of our PRS in identifying individuals at an
elevated risk for HCM. In total, higher genetically determined LVRWT
was associated with higher HCM risk, which may provide valuable risk
stratification guidance to identify high-risk individuals.

Discussion
To our knowledge, this study is the first largest individual-level GWAS
to investigate the genetic architecture of LVRWT traits. We established
a novel deep learning algorithm to assess 12 LVRWTs accurately using
CMR imaging in a large population-based biobank. We identified 72
significant genetic loci associated with at least one LVRWT phenotype,
and candidate genes were actively participating in heart development
and heart contraction pathways. Furthermore, we evaluated the causal
relationships between the LVRWT traits and CVDs with MR analyses
and found supporting evidence of LVRWT being causal for increased
HCM. We demonstrated that PRSs derived from LVRWT traits are
associated with incident HCM. This suggests that the genetic basis of
LVRWT traits may offer valuable information for the risk stratification
of individuals, aiding in the early screening of HCM (Supplemen-
tary Fig. 14).

Due to various subjects and cardiac disorders having varied forms
and structures, and the LV myocardium experiencing complicated
regional deformation during the systole and diastole phases of the
cardiac cycle11, it is challenging to obtain an accurate estimation of
LVRWT. Therefore, few studies were carried out on the quantification
of LVRWT, and little was known about the heritability and genetic basis
of LVRWT. Deep learning is a powerful tool for deriving quantitative
phenotypes from raw signal data at a population level. In this paper, by
using a deep learning-based method to segment LV structures, we
were able to design an automatic measurement algorithm to quantify
myocardial wall thicknesses accurately. Reassuringly, the mean abso-
lute errors of LVRWT of our solutions are atmost 1.04mm, suggesting
that the MSMM has the highest accuracy of LVRWT. Compared to the
maximum wall thickness or mean wall thickness24,25, we finely divided
the wall thickness into 12 LVRWTs, permitted characterization of the
genetic architecture of each region and provided new biological
insights. According to heritability estimates ranging from 17% to 28%,
our research revealed that a sizable portion of the LVRWT phenotypic
variability is explained by the underlying genetics. Furthermore, the
modest genetic correlations and limited locus overlapof the 12 LVRWT
traits highlighted their distinct biology.

A total of 6345 candidate variants are identified in 62 unique loci.
Characterizing the genomic characteristics for these risk variants of 12
LVRWT traits allowed us to identify their enrichment in intron region,
gene upstream and downstream regions, and intergenic region, which
sheds light on the regulatory functions of risk variants26. This notion is
also supported by the fact that candidate variants are enriched in
TFBSs and histone modification markers like H3K4me3, H3K4me1,
H3K27ac, and H3K36me3, which suggests a connection between

chromatin status and regulatory properties of risk variants of LVRWT
traits. Importantly, we further confirmed a significant enrichment of
these risk variants in the CVDs GWAS loci. This finding strengthens the
growing evidence that the majority of GWAS risk variants influence
disease risk via their regulatory activities.

Extensive multilayered bioinformatic annotations identified can-
didate genes that have an important role in cardiac muscle cell
development and heart contraction. In light of recent Khurshid’s
study, it conducted a GWAS of CMR-derived left ventricular mass
indexed (LVMI) in the UKB. By comparing the loci of the 13 genes from
Khurshid’s study, we found an overlap with 5 genes also identified in
our research27. This overlap underscores the consistency of genetic
associations related to cardiac traits and cardiomyopathy between our
study and Khurshid’s study. In addition, many of candidate genes
identified in this study have previously been linked to CVDs. Specifi-
cally, many of candidate genes overlapped with previously reported
loci for the cardiac volumetric and functional phenotypes, such as
ALPK328, NMB29, CASQ230, CDKN1A31, ACTN232 and GATA433. For exam-
ple, the alpha kinase 3 (ALPK3) encodes a kinase previously implicated
as the causal gene in HCM21. ALPK3 regulates the expression of tran-
scription factors (like HEY and HAND proteins) to induce differentia-
tion and maturation of cardiomyocytes at the beginning of the
process34. Mutations in ALPK3 cause familial cardiomyopathy and
demonstrate loss of function as the underlying genetic mechanism35.
Additionally, HCM is a disease of sarcomere proteins, which are
composed of thick and thin filaments and Z discs20. In agreement with
this notion, we also discovered loci like SYNPO2L, GBAP1, MYOZ1,
CAPN9, DMTN, and MTSS that had not been identified in earlier
research on cardiac volumetric and functional traits. Interestingly,
these genes were revealed to actively participate in Z disc, myofila-
ment, sarcomere, and actin pathways. As an illustration, the scaffold-
ing and actin/myosin regulatory protein known as synaptopodin 2 Like
(SYNPO2L), which is expressed in the cardiac muscle and localizes at
theZ-disc and interactswith a number of other actin proteins, has been
linked to cardiac arrhythmia36. Altogether, several candidate genes are
involved in heart development and contraction, and Z disc pathway
activation, suggesting that candidate genes may contribute to the
development of cardiomyopathies.

As the strong interdependence and genetic correlations between
LVRWTandLVvolumetric and functional traits, a significant fractionof
the LVRWT loci were linked to previously identified loci for LV volu-
metric and functional imaging traits. This finding supports the justifi-
cation for investigating the genetics of LVRWT traits as a
complementary gateway to understanding the drivers of cardiac
remodeling37. Previous studies have indicated that LVRWT traits are
independent predictors of a number of clinical outcomes such as
stroke38, ventricular arrhythmia39, and hypertension40. Although
human measurement of ventricular wall thickness is prone to varia-
bility, a multi-center longitudinal cohort study has reported that
LVRWT is a key imaging biomarker in HCM, guiding diagnosis, risk
stratification, and clinical management24. In consistent with these
findings, we also systematically examined the genetic relations
between LVRWT traits and CVDs obtained from published GWASs. We
observed genetic associations between LVRWT traits and CVDs, such
as HCM, hypertension, pulmonary hypertension, chronic ischemic

Fig. 7 | Distribution of PRS and cumulative incidence of HCM stratified by PRS.
a,bDistributionof PRS for participantswith thin,medium and thick LVRWT. PRSof
inferoseptal LVRWT end systole (a) and end diastole (b) yielded discrimination for
the LVRWTs. c, d A total of 439,981 individuals unrelated to the CMR cohort. Those
in the first tertiles of genetically predicted inferoseptal LVRWT are depicted in
green, the second tertiles are depicted in blue and the last tertiles are depicted in
red. The darker shades represent the central estimate of the cumulative incidence
(defined as 1-the Kaplan–Meier survival estimate). The lighter shades represent the
respective 95% CIs. The x axis depicts years since enrollment in the UKB; the y axis

depicts cumulative incidence of HCM. Strata based on genetic prediction of
inferoseptal LVRWT at end systole (c) and end diastole (d). Distribution of ES-IS (e)
and ED-IS (f) PRSpercentiles forHCMcases (n = 420) and controls (n = 439,561). For
all box plots: central line of each box, median; top and bottom edges of each box,
first and third quartiles; whiskers extend 1.5× the interquartile range beyond box
edges. P values were calculated by a two-sided Student’s t test. Asterisk denotes
statistically significant differences *p <0.05; **p <0.01; ***p <0.001. PRS polygenic
risk score, HCM hypertrophic cardiomyopathy, LVRWT LV regional wall thickness,
ES end systole, ED end diastole, IS inferoseptal.
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heart disease, and ischemic stroke, which further reinforced the
importance of LVRWT in maintaining efficient circulatory physiology.
The results of the MR analysis also showed that LVRWT traits are
potentially causally linked with CVDs. Notably, LVRWT traits have the
strongest causative effects on HCM than other CVDs. Specifically,
these findings point to the notion that HCM may represent the
extreme of LVRWT phenotypic variations in certain people, which is
helpful to demonstrate that LV wall thickening is the most consistent
clinical marker of HCM41.

GWAShas identifiedgenetic variations that contribute to complex
traits and diseases, leading to the development of PRS. The effective-
ness of the PRS is often evaluated by determining whether it can help
screen the high-risk population to guide clinical or personal decision-
making42. In agreement with this development, our analyses of PRSs
shed light on the linkage between genetically determined LVRWT
phenotypic variations and the incidence of HCM. Interestingly, the
top-performing PRS, which included 115 variants linked to inferoseptal
LVRWT at end systole, successfully identifies individuals at high risk of
HCM, especially in those without CMR data. In accordance with
recommendations, inferoseptal hypertrophy with a thickness greater
than 15mm was a major component of the diagnostic criteria for
HCM43,44. The PRSs might identify high-risk, asymptomatic individuals
who would benefit from CMR to screen for HCM. Likewise, previous
studies also have reported that the PRSs of LV structure and function
traits predict heart failure events2 and incident dilated
cardiomyopathy12. Collectively, PRS may provide complementary
information within guideline-supported frameworks to better stratify
different trajectories of HCM risk and inform clinical decision-making
for primary prevention and early screening.

We acknowledge some limitations in our study. First, our study
population largely consisted of European ancestry, limiting general-
izability to other populations, and validation of our findings in more
diverse cohorts is needed to assess their applicability to non-European
populations. Second, further validation of PRS performance is required
in independent cohorts. While PRSs derived from LVRWT traits showed
associations with an increased risk of HCM, it’s important to recognize
that the predictive performance of these PRSs were relatively limited.
Our future research will focus on identifying additional genetic loci and
molecular markers, with the goal of enhancing the predictive cap-
abilities of our models. Furthermore, while our study provides strong
statistical support for the loci that are highly specific for LVRWT phe-
notypic variation, future experimental studies using gene-editing
techniques in cellular and animal models are warranted to elucidate
the functional roles of the highlighted risk genes and the underlying
mechanisms modulating LVRWT. Lastly, although our findings provide
valuable insights into the genetic basis of LVRWT, the complexities of
genetic regulation and functional mechanisms within specific cardiac
cell types might require more advanced methodologies, such as
emerging single-cell genomics techniques, to fully unravel the intricate
genetic networks underlying LVRWT and related cardiac remodeling.

In conclusion, using a novel deep learning algorithm to quantify
LVRWT measured by CMR, we uncover common variants at 72 sig-
nificant genetic loci associated with LVRWT, and implicate candidate
genes linked to HCM. Moreover, we demonstrate that PRSs derived
from LVRWT traits are associated with incident HCM, even in indivi-
duals without CMR data. Altogether, these findings represent a sub-
stantial advance in our understanding of the genetic architecture of
LVRWT phenotypes and shed light on the biological basis for HCM
etiology, which may lead to potential novel therapeutic targets and
personalized risk stratification strategies in the future.

Methods
Study population
The UKB is a large prospective cohort study of over 500,000 partici-
pants recruited at 22 assessment centers across the UK between 2006

and 2010. It has gathered a wealth of information on participants,
including health and lifestyle data, physical measurements, biological
samples, imputed genome-wide genotypes and imaging data. All par-
ticipants provided informed consent. The ethical committees from the
North West Multi-Center Research Ethics approved the study.

Sample selection
Disease information based on the UKB Field ID and date of first in-
patient diagnosis is provided in Supplementary Data 19. In total, we
analyzed 45,353 participants with CMR who had not withdrawn con-
sent as of December 2020. After excluding participants with poor
imaging, missing information on genetic data, previous myocardial
infarction, diagnosis of heart failure as well as body mass index
(BMI) < 16 or > 40 kg/m2, 42,194 individuals were included in the ana-
lysis following the quality-control procedures outlined in Supple-
mentary Fig. 1. Among the initial 456,937 individuals without CMR
data, we excluded individuals without genotype data, resulting in a
final sample size of 442,889 individuals. After accounting for missing
informationon smoking and alcohol consumption, the sample sizewas
further reduced to 440,085 individuals. Additionally, in subsequent
analyses focusing on specific diseases, we further excluded individuals
who had the corresponding disease prior to their enrollment in the
UKB. For instance, in the case of HCM, we excluded 104 individuals
who had HCM before their enrollment, resulting in a final sample size
of 439,981 individuals.

Definitions of covariates and phenotypes
All covariates recorded at the imaging visit were used in the analysis
where possible. The UKB Data-Fields of covariates were listed in Sup-
plementaryData 20. BMIwas calculated as: weight(kg)/height(m)2. The
definitions were used for GWAS participant exclusion and PRS
assessment.

Semantic segmentation and deep learning model training
CMR protocol had previously been described in detail13. In brief, CMR
was performed with 1.5 Tesla scanners (MAGNETOM Aera, Syngo
Platform VD13A, Siemens Healthcare, Erlangen, Germany) using elec-
trocardiographic gating for cardiac synchronization. Long-axis cines
and a complete short-axis stack of balanced steady-state free preces-
sion cines were acquired at one slice per breath hold.

Semantic segmentation aims to assign a label to each pixel in an
image. In the proposed MSMM framework, the deep learning model
for segmentation learns to extract MR image features and output one
of three different classes for each pixel, including background, LV
cavity, and LV myocardium. Labels of LV structures in the ACDC
(https://www.creatis.insa-lyon.fr/Challenge/acdc/index.html) dataset
are annotated by one clinical expert. There are 1420 images for train-
ing process, 100 images for validation and 382 images for testing
process. Additionally, we resorted to a doctor who has 7 years of
clinical experience to label the LV cavity and LV myocardium on the
UKB dataset for a comprehensive evaluation. During the testing stage,
80 mid-cavity slices from the ACDC dataset and 500 mid-cavity slices
from the UKB dataset were employed for evaluating the performance
of the segmentation model.

We utilized the DLANet16,17 architecture as a segmentation model,
which uses two types of structures: the Hierarchical Deep Aggregation
(HDA) and the Iterative Deep Aggregation (IDA). With the HDA and
IDA, the DLA architecture can better merge information frommultiple
layers and scales, and achieve state-of-the-art performance in the
segmentation task. DLANet with 166 hidden layers and 20,576,932
parameters was implemented in Pytorch. Training and inference pro-
cesses were performed on NVIDIA GeForce GTX 1080 Ti GPUs. During
the training process, the DLANet was trained from scratch for 1000
epochs. We employed the Adam45 optimizer for minimizing the Dice
Loss46. The initial learning rate was set to 1 × 10−3 and decayed by 0.99
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every epoch. The weight decay was 1 × 10−5. At the inference stage, one
frame of a patient with all slices in the size of (8–12)*256*256 will take
about 0.5 s on one GPU. Additionally, we compared the performance
of the DLANet with state-of-the-art methods by re-implementing them
and reporting the results in Supplementary Data 21 and 22. The com-
parative analysis across different datasets provides valuable insights
into the efficacy of our proposed deep learning model.

Before the training process, we first performed data preprocessing
operations. The in-plane resolution of the original cardiac MR images
was resampled to 1.25mm× 1.25mm, and then the resampled images
were cropped or padded to a size of 256 × 256. During training, data
augmentations were employed including random shifting, rotation,
scaling and so on. For images at the base or apex of the LV, we over-
sampled them more than one times in an epoch to increase their fre-
quency during the training data and improve the performance on these
images for their difficulty.We ranvalidationevery 20epochsof training,
and when the training process was complete, we selected the DLANet
that performs best on the validation set for testing. Finally, the trained
model output LV segmentation results on the UKB dataset and the
results were used for subsequent quantification of the myocardium.

For quantification, we designed a measurement-based method to
calculate wall thicknesses. Before the measurement, we normalize the
MR images47 by rotation to the fixed arrangement in order to perform
subsequent measurements. The thicknesses rely on the calculation of
the distance between the center and the contour of the mask, either
epicardium or endocardium, for some direction. To this end, we first
converted the Cartesian coordinate system into a polar coordinate
system and then generated the distance based on the direction angle.
Finally, we averaged ten measurements for wall thicknesses. We then
used MSMM to calculate the myocardial thicknesses in the UKB. We
obtained accurate estimations of 12 LVRWT traits which included 6
LVRWT phenotypes at end systole (ES-IS, ES-I, ES-IL, ES-AL, ES-A, and
ES-AS) and 6 LVRWTphenotypes at end diastole (ED-IS, ED-I, ED-IL, ED-
AL, ED-A, and ED-AS). Additionally, we assessed the DLANet’s perfor-
mance across various training dataset sizes, as detailed in Supple-
mentary Data 23 and 24, demonstrating the model’s robustness even
with limited training data. The techniques used to postprocess the
deep learning output to measure wall thickness is described in
the Supplementary Methods.

Genotyping and imputation
Detailed information on genotyping and imputation in the UKB has
been described previously48. Briefly, participants were genotyped
based on UK BiLEVE Axiom™ Array by Affymetrix (807,411 markers for
49,950 participants) and UKB Axiom Array by Affymetrix (825,927
markers for 438,427 participants). Genotype imputation was based on
merged UK10K sequencing and 1000 Genomes phase3 reference
panels with SHAPEIT3 and IMPUTE349. Variant positions were keyed to
the GRCh37 human genome reference.

GWAS and heritability
We calculated the residuals by regressing LVRWT phenotypes on the
covariates age, sex, BMI, and imaging center. We performed the GWAS
of each normalized LVRWT trait using a linear mixed-model method
using ~8.5 million well-imputed variants with minor allele frequency
(MAF) ≥ 1% and imputation quality (INFO) score >0.3 by BOLT-LMM.
Wenext estimated the heritability explainedby the genotyped variants
(h2

g variant) using BOLT-RELM. Both GWAS and heritability analysis
models were adjusted for age, sex, BMI, and principal compo-
nent (PC) 1–10.

Genetic correlation
Using summary statistics, we applied LDSC software50 to estimate the
genetic correlations (1) between 12 LVRWT traits; (2) between 12
LVRWT traits and 10 cardiac structure and function traits12: heart rate,

diastolic blood pressure, systolic blood pressure, LV end-diastolic
volume (LVEDV), LV end-systolic volume (LVESV), stroke volume (SV),
the body-surface-area (BSA) indexed versions of these traits (LVEDVi,
LVESVi, and SVi), and LV ejection fraction (LVEF); and (3) between 12
LVRWT traits and 11 CVDs: hypertension, pulmonary hypertension,
dilated cardiomyopathy, HCM, cardiomyopathy, HEART FAILURE,
atrial fibrillation, myocardial infarction, angina pectoris, chronic
ischemic heart disease, ischemic stroke. Data sources of summary
statistics for genetic correlation analyses were listed in Supplemen-
tary Data 2.

Given the unavailability of GWAS summary data for hypertrophic
cardiomyopathy, pulmonary arterial hypertension, and dilated cardi-
omyopathies, we performed GWAS analyses utilizing ~8.5 million well-
imputed variants, each with a MAF ≥ 1%, and an INFO score exceeding
0.3, using data from the UKB. Each GWAS analysis was adjusted for
covariates including age, sex, BMI, smoking status, alcohol intake
frequency, and thefirst tenprincipal components (PC1-10). The sample
sizes for each disease were as follows: hypertrophic cardiomyopathy
(552 cases and 2208 controls), pulmonary arterial hypertension (2047
cases and 8301 controls), and dilated cardiomyopathies (1303 cases
and 5281 controls).

Functional follow-up with FUMA
The web tool Functional Mapping and Annotation of Genome-Wide
Association Studies (FUMA) has previously been described in detail
(https://fuma.ctglab.nl/)51. Genome-wide significant variants were
defined by trait associations P < 5 × 10−8 and r2 < 0.1 with correlated
variants in 250kb region using FUMA.

We utilized twomain approaches tomapgenome-wide significant
loci to genes via FUMA default settings and specialized datasets, as
described follows: (1) positionalmapping of variants, whereby variants
within a 10kB window from known protein-coding genes in the human
reference assembly (GRCh37/hg19) are mapped; (2) eQTL mapping
whereby allelic variations at a variant is significantly linked to expres-
sion of a gene, where we considered eQTLs within heart atrial appen-
dage and heart left ventricle from GTEx v8.

We also performed a generalized gene-set analysis using MAGMA
within FUMA. variants within exonic, intronic, and untranslated
regions were chosen for each gene. The 18,888 protein-coding genes
were used inMAGMA. Themean of the summary statistic (χ2) of GWAS
for the variants in a gene was used to determine the gene-based P
value52. The Bonferroni method was used to calculate the P value sig-
nificance threshold, which is 2.64 × 10−6 when 0.05 is divided by the
total number of genes (18,888).

Transcriptome-wide association study
For each of the 12 LVRWT phenotypes, we performed a TWAS to
identify the most strongly associated gene at each locus based on
imputed cis-regulated gene expression. We used FUSION with eQTL
data from GTEx v8. Precomputed transcript expression reference
weights for the LV (5886 genes), the atrial appendage (6740 genes),
and the artery coronary (3989 genes) were obtained from the FUSION
authors’ website (http://gusevlab.org/projects/fusion/). A P < 8.49 ×
10−6 was considered significant in LV tissue, a P < 7.42 × 10−6 was con-
sidered significant in atrial appendage tissue, a P < 1.28 × 10−5 was
considered significant in artery coronary tissue. FUSION was then run
with its default settings.

Enrichment and tissue expression analyses
Functional enrichment and pathway characterization of the 127 can-
didate genes at end systole and 95 candidate genes at end diastole
were done in thewebsite (http://kobas.cbi.pku.edu.cn/) to obtainGene
Ontology (GO) terms. Tissue expression analyses were obtained from
GTEx which were also integrated in FUMA. Average gene expression
per tissue typewas utilized as a gene covariate to test for a positive link
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between gene expression in a given tissue type and genetic
correlations.

Mendelian randomization
We used MR to estimate causal effects between the 12 LVRWT expo-
sures and 11 CVDs. For two sample MR analyses, we used MR-Egger
regression, weighted median and mode-based estimations as sensi-
tivity analyses, along with the inverse-variance weighted (IVW) tech-
nique as our major model. To determine whether any discernible
influence was mediated by outliers, the MR Pleiotropy RESidual Sum
and Outlier (MR-PRESSO)53 approach was applied. In brief, we selected
variants that were genome-wide significant (P < 5 × 10−8) for each
LVRWT trait, and remove variants in LD using default settings
(r2 < 0.001, kb = 10) to generate independent variations. A P <0.05/5
traits = 0.01 was considered statistically significant. All analyses were
performed using the R package TwoSampleMR.

Polygenic risk score
Weused theC +T (clumping + thresholding)method54 to construct the
polygenic risk score (PRS) of each LVRWT trait based on the effect
sizes derived fromthe LVRWTGWASs. The PRSwas calculated through
a weighted model, as shown below:

PRSj =
X

i = 1

βiGi,j

where β values (the log of odds ratio) is the summary statistic for the
effective allele andG is the number of the effective allele observed.We
used variants with genome-wide significant (P < 1 × 10−5) and clumping
window (r2 < 0.1, kb = 250) to derive PRS. We repeated this procedure
for each of the 12 traits, producing 12 PRSs. We categorized
participants into three genetic risk levels: low (lowest tertile),
intermediate (second tertile) and high (highest tertile).

Additional and detailed analyses are available in the Supplemen-
tary Methods.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data from theUKB (www.ukbiobank.ac.uk/register-apply) are available
to all researchers upon making an application. This research has been
conducted using the UKB Resource under Application 63454. Data
sources of publicly available GWAS results were listed in Supplemen-
tary Data 2. The GWAS summary statistics generated in this study have
been deposited in the Human Genome Research Institute GWAS
Catalog under accession codes: GCST90278508 to GCST90278519 for
the 12 LVRWTs, GCST90296096 for HCM, GCST90296097 for dilated
cardiomyopathy, and GCST90296098 for pulmonary hyperten-
sion. Source data are provided with this paper.

Code availability
Data processing scripts used to perform the analyses described herein
are available at https://github.com/goodluckncb/LVRWT-script.
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