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the patient for better image quality. In this paper, we propose an artery and vein disen-
tanglement network (AVDNet) for robust and accurate segmentation by incorporating
the coronary vein into the segmentation task. This is the first work to segment coro-
nary artery and vein at the same time. The AVDNet consists of an image based vessel
recognition network (IVRN) and a topology based vessel refinement network (TVRN).
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vascular boundaries. Extensive experiments are conducted on a multi-center dataset of
700 patients. Quantitative and qualitative results demonstrate the effectiveness of the
proposed method by comparing it with state-of-the-art methods and different variants.
Prediction results of the AVDNet on the Automated Segmentation of Coronary Artery
Challenge dataset are available at https://github.com/WennyJJ/Coronary-Artery- Vein-
Segmentation for follow-up research.
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1. Introduction (CAD) is one of them. CAD happens when the major blood

vessels that supply your heart become damaged or diseased due

Cardiovascular diseases (CVDs) are the leading cause of
- to the buildup of plaques. It often develops over decades with-

death globally (WHQ, P2021). CVDs refer to a group of disor-
out a noticeable problem until patients have a significant block-

ders of the heart and blood vessels, and coronary artery disease
age or a heart attack. Therefore, early diagnosis is critical and

coronary computed tomography angiography (CCTA) is an ef-
*Corresponding author: Email: xiaqing @sensetime.com; Tel.: +86-186- . . . .
0192-0416. fective and commonly used imaging method for this purpose.
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(a) anatomy of coronary vessels

(b) an easy case

(c) ahard case

Fig. 1. Anatomy of coronary vessels and two real examples. (a) anatomy of coronary arteries (red) and veins (blue) (b) an easy case characterized by a
significant intensity difference between coronary arteries and veins, allowing for easy distinction of the vessels. (c) a challenging case with similar intensity
of both coronary arteries and veins, which can result in segmentation errors in local regions.

Segmentation of coronary arteries from CCTA images is a vi-
tal step before the centerline extraction, plaque detection, and
stenosis quantification in a typical diagnosis pipeline. Research
on automatic and objective vessel extraction has been carried

out for decades. (Kirbas and Quek, 2004) reviewed and di-

vided vessel segmentation methods into six main categories:
pattern recognition techniques (Niki_ef-all, T993; Sarwal and
Dhawan, T994)), model-based approaches (van der Weide ef all,
P00T), tracking-based approaches (Iolias-and Panad, T99R), ar-
tificial intelligence-based approaches (Sfansfield, T986f), neu-
ral network-based approaches (Nekovei and Sur, T995; Hunfet

ef_all, M995) and miscellaneous tube-like object detection ap-

proaches (Kompatsiaris et all, Z000). However, traditional vas-

cular segmentation methods are time-consuming, parameter-
sensitive, and thus difficult to achieve the desired accuracy on
unseen cases with various diseases and image artifacts. This
limits the large-scale data analytics and integration with clini-
cal systems.

The advance in deep learning brings new ideas for segment-
ing blood vessels in medical images. In particular, researchers
have adopted various deep learning methods on coronary artery

segmentation from CCTA images in recent years (Kong et all,
2020; Chen ef all, P0TY, POTR; Leief all, 202(; Pan_ef all, DOT;

Song et all, P022). The Automated Segmentation of Coronary
Arteries Challenge (ASOCA) " in MICCAI 2020 was held to

encourage developing fully automatic segmentation methods of

Uhttps://asoca.grand-challenge.org/

the full coronary artery tree by establishing a standardized an-
notated dataset of healthy and diseased coronary arteries from
60 subjects. These studies focused on coronary arteries and ig-
nored the influence of coronary veins in arterial segmentation.
Within the human blood circulation system, the coronary arter-
ies and veins of the heart interweave in a complex manner, like
in Fig.l (a). In ideal CCTA images, the intensities of arteries
are much higher than those of veins, which makes it easy to
distinguish between them even when they are very close, such
as the case in Fig.l (b). However, in some practical cases like
Fig . (c), it is difficult to tell them apart due to similar intensi-
ties caused by the misoperation of technicians or blood circula-
tion differences in patients. In such a challenging scenario, the
artery segmentation methods are prone to errors. These errors
could be corrected by revising the segmentation results manu-
ally or acquiring the CCTA images one more time. However,
both solutions cost much longer time in image processing, and
the latter increases the risk of radiation for patients. In this pa-
per, we focus on obtaining accurate and reliable coronary artery

segmentation results automatically under various conditions.

In order to achieve our goal, we integrate coronary vein seg-
mentation into the task. As far as we know, this is the first study
to segment coronary artery and vein vessels simultaneously
from the CCTA images. We propose an artery and vein dis-
entanglement network (AVDNet), consisting of two stages. In
AVDNet, an image-based vessel recognition network (IVRN)
learns to output the initial segmentation results and followed

by a topology-based vessel refinement network (TVRN) to re-
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vise the results. The IVRN has one encoder and two decoders,
which are responsible for image feature extraction, coronary
vessel segmentation, and artery-vs-vein classification, respec-
tively. The IVRN has the ability to distinguish between arteries
and veins. However, when nearby arteries and veins have simi-
lar intensities in some local regions, the IVRN learned from im-
age features may produce topologically incorrect results. This
motivates us to design an additional network, TVRN, to revise
the initial segmentation by taking advantage of structural fea-
tures to maintain topological consistency. The TVRN consists
of two encoders and one decoder. One encoder learns struc-
tural features from recognized results of IVRN with different
states, and the other one learns image features from varying HU
values. Finally, the decoder receives the concatenated features
and learns how to reduce the intensity interference and main-
tain the topology consistency. We also design a novel inverse
distance weighted dice (IDD) loss. The IDD loss pays more at-
tention to voxels near edges and vice versa, which can segment
more thin structures and protect vascular edges. We employ a
multi-center dataset of 700 patients to carry out experiments.
Among them, the testing dataset consists of 200 patients, 100
images with strong discrimination of arterial and venous inten-
sity values forming a easy dataset, and the remaining 100 ones
forming a hard dataset. We adopt centerline overlap to evalu-
ate the completeness of the extracted vessel tree and present a
weighted dice coefficient to address the problem that the tradi-
tional dice metric is region-based, being easily affected by thick
branches. This weighted dice metric takes more care of thin
vessels and reduces the effect of thick vessels on the results.
To facilitate follow-up research, we perform inference on the
ASOCA dataset by using AVDNet and open-source the predic-
tion results with coronary artery and vein vessels. In summary,

the main contributions of this paper include:

1. First study of joint coronary artery and vein segmentation,
which aims to produce reliable and accurate vessel tree

extraction even from low-quality images.

2. A novel method, AVDNet, is proposed, which consists of

two-stage learning. First, IVRN learns from image fea-

tures to obtain an initial segmentation, and then TVRN
learns from morphological features to refine the segmen-

tation to ensure topology consistency.

3. A novel loss, IDD, is designed to preserve thin vessels and

obtain accurate vascular boundaries.

4. A weighted dice coefficient is designed to better evalu-
ate the segmentation results, paying more attention to any
missed vessel segments rather than to ambiguous bound-

aries of thick vessels.

The rest of the paper is organized as follows. Section O in-
troduces some related work. Section B provides details of the
proposed method. Section B reports the experimental settings
and results, followed by discussions. The work is concluded in

Section B.

2. Related work

In recent years, deep learning based methods have been
successfully applied to medical image segmentation tasks (He
ef-all, DO2T; Cimef-all, P0727; Zhuang_ et all, 2027; Wang et all,
20727 Davies_ef all, P0272; Cno_ef all, P20272; Chang et all, 20272
Qu et all, P071; Wang et all, Z0T9R). These methods are more
efficient and generally provide more reliable results than tradi-
tional methods. In this section, we will review some deep learn-
ing based methods on tubular-structure segmentation, coronary
artery segmentation, and artery and vein segmentation, respec-

tively.

2.1. Tubular-structure segmentation methods

For 2D tubular segmentation, Laibacher et al. (Laibached
efall, 2019) proposed a U-Net-like architecture to segment reti-
nal vessels in the fundus image. Since the size of training
data in medical applications is usually small, Wu et al. (Wii
ef—all, PO21) proposed a scale and context sensitive network
to tackle the problems of large variations of scale and seman-
tics, while Zhao et al. (Zhao ef all, DOTR) utilized generative

adversarial network to synthesize retinal and neuronal images

for improving segmentation performance. Xia et al. (Xiaef-all,
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2019) developed a matrix decomposition model to take advan-
tage of temporal motion information in the x-ray coronary an-
giographic video data for 2D vessel segmentation. For 2.5D
tubular segmentation, Yun et al. (Yun“ef-all, POTY) proposed
a novel airway segmentation method in volumetric chest com-
puted tomography, which performed voxel-by-voxel segmenta-
tion by a 2.5D convolutional neural network. Cui et al. (Cii
ef-all, POTY9) applied a 2.5D segmentation network from three
orthogonal axes to automatically segment pulmonary vessels.
The 2.5D network has lower network complexity and memory
usage compared to 3D networks. For 3D tubular segmentation,
Wang et al. (Wang_et all, 20193) proposed a novel radial dis-
tance loss to improve segmentation of thin tubular structures
for 3D bronchus in CT scans. Furthermore, a novel geometry-
aware tubular structure segmentation method was proposed by
Wang et al. (Wang et all, 2020]), which combines intuitions from
the classical distance transform for skeletonization and modern
deep segmentation networks. Qin et al. (Qin et all, Z0TY) pre-
sented a voxel-connectivity aware approach named AirwayNet
for accurate airway segmentation on CT scans. This approach
transformed the conventional binary segmentation task into 26

tasks of connectivity prediction by connectivity modeling.

2.2. Coronary artery segmentation methods

Besides the above tubular segmentation approaches, several
recent studies have adopted deep learning with different net-
work architectures for fully automatic coronary artery recon-
struction in CCTA data, e.g., by using a 3D multi-channel U-
Net (Chen_ef all, P0T9), a 3D attention fully convolution net-
work (Lei_ef all, 2020), and a 3D Dense-U-Net (Pan_ef all,
2071). Shen et al. (Shen_ef_all, 20TY) combined both the tra-
ditional level set method and 3D fully convolutional network
to produce more smooth segmentation results. To explicitly
learn the anatomical structure of the coronary artery, Kong et
al. (Kong et all, Z020) proposed a tree-structured convolutional
gated recurrent unit model. In practice, due to the large size of
CCTA data and limited memory of GPU, a CCTA scan may be
divided into small patches to obtain prediction in the original

resolution. Gu et al. (Gu-and Cai, P021)) uses both 2D CNN

and 3D CNN to perform aorta and coronary artery segmenta-
tion. 2D CNN first extracted large-field-of-view information
in a slice-by-slice fashion and generated segmentation results.
Then, 3D CNN extracted the inter-slice information to refine
the segmentation results in 2D CNN. Song et al. (Song et all,
2027) used a 2D classification network to screen out the non-
coronary-artery slices to obtain a smaller ROI for 3D segmenta-
tion. Instead of voxel-based segmentation methods, Wolterink
et al. (Wolferink ef all, P0T9) modeled the coronary artery with a
tubular surface mesh and utilized graph convolutional networks
(GCN) to optimize the location of the surface mesh vertices for
lumen segmentation. Despite these previous researches, some
challenges are remaining in this particular task, such as false

positives of arterial predictions.

2.3. Artery and vein segmentation methods

In pulmonary vessel segmentation and hepatic vessel seg-
mentation tasks, vessel classification, such as artery and vein
classification, is clinically required. Nardelli et al. (Nardelli
ef-all, POTX) combined CNN with a graph-cut strategy to clas-
sify vessels into arteries and veins on chest CT images. Jimenez
et al. (lmenez-Carrefero_ef all, P0TY) presented a framework
to approach the separation of tree-like structures and designed
graph-cut methodology to ensure connectivity as well as the
spatial and directional consistency of the derived sub-trees.
This framework was applied to the pulmonary artery and vein
classification. Qin et al. (Qin et all, 2021 presented a CNNs-
based method to segment airway, artery, and vein simultane-
ously in non-contrast computed tomography. It enjoys supe-
rior sensitivity to tenuous peripheral bronchioles, arterioles, and
venules. Keshwani et al. (Keshwaniefall, 2072(]) proposed Top-
Net to detect voxels on vascular centerlines and estimate con-
nectivity between center-voxels in the tree structure to be recon-
structed. With TopNet, the extracted portal and hepatic veins
can better preserve their topology. Guo et al. (Guo_ef-all, 2077)
proposed a framework to segment portal veins and hepatic veins
from multi-phase MR images, which takes the vascular flow
into account to improve segmentation performance.

Different from the above studies, existing research on coro-
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Fig. 2. Overview of the proposed AVDNet. IVRN and TVRN are cascaded in the AVDNet. For IVRN, CVSB learns a 2-class segmentation task to predict
vessels, including both artery and vein, as the foreground category; AVCB learns to distinguish between coronary arteries and veins in the foreground.
TVRN combines the morphology input from the segmentation results of the AVCB and the image input with varying HU values to output the revised

segmentation results.

nary artery segmentation ignored the influence of venous ves-
sels. In practical cases, coronary artery and vein in CCTA im-
ages have similar HU values and cross each other in close vicin-
ity, prone to incorrect segmentation results. Inspired by this,
we integrate coronary vein segmentation into coronary artery
segmentation task and propose the AVDNet for artery and vein

classification.

3. Methods

We propose a coronary artery and vein segmentation method,
AVDNet, which is illustrated in Fig.D. It consists of two net-
works IVRN and TVRN. We first use the IVRN to segment both

arteries and veins from CCTA image, and then use the TVRN

to revise incorrect predictions regarding the topology consis-
tency. In order to preserve thin vessel structures while obtaining
accurate vascular boundaries, we propose an inverse distance
weighted dice (IDD) loss which pays more attention to voxels
near boundaries. Both IVRN and TVRN are supervised by the
IDD loss. The complete names of terms, acronyms, along with
their detailed purpose can be found in Table.S1 in the supple-

mentary materials.

In the following subsections, we explain the proposed net-
works and loss functions in detail. We denote the set of input
CCTA ROI images as X = {x; : i = 1, ..., N}, where the size of
x; is D = W = H. The set of corresponding ground-truth labels

is denoted as Y = {y;}, y; is a three-class label including back-
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C*W*H*D
convolution convolution convolution
C*O*K*1*1 C*O*1*K*1 C*O*1*1*K
convolution convolution convolution
O*O*1*K*1 O*O*K*1*1 O*O*1*K*1
convolution convolution convolution
O*0O*1*1*K O*O*1*1*K O*O*K*1*1

SUM
O*W*H*D

(a) 3D GCN module in IVRN
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(b) RSD module in both IVRN and TVRN

Fig. 3. Details of two modules used in the AVDNet: (a) 3D global convolutional network (GCN) module and (b) random stochastic depth (RSD) module.

ground, coronary artery and vein. Yg;, = {yf?} denotes the binary
version vessel label, which merge artery and vein into the same
category. The set of initial segmentation results from IVRN is

denoted as S, and the refined results by TVRN as R.

3.1. Image-based vessel recognition network (IVRN)

IVRN splits the multi-class segmentation task into two sub-
tasks, one for coronary vessels and background recognition, and
the other for artery-vs-vein classification. As shown in the up-
per part of Fig [, the IVRN has one encoder and two decoders
for multi-task learning. It takes CCTA image as input and out-
puts two types of segmentation from the two decoders, coronary
vessels segmentation branch (CVSB) and artery-vs-vein classi-
fication branch (AVCB).

In 3D medical image segmentation tasks, receptive field is
important for accurate and robust prediction. We employ a
multi-scale 3D global convolutional network (GCN) and a ran-
dom stochastic depth (RSD) module in the encoder for extract-
ing comprehensive image features for accurate distinguish of
coronary arteries and veins. The 3D GCN is illustrated in Fig.B,
which is expanded from the traditional 2D GCN (Peng et all,
2017). With 3D GCN, on the one hand, we can set a larger ker-
nel size to increase the receptive field, and on the other hand,
using a separate k = 1 = 1 convolution in different directions

(D, W, H) will have a better performance than using k * k * k

convolution directly as reported in (Peng_ et all, 20T7). Due to
the small targets of vessels, we just place 3D GCN to the first
few layers in the encoder, whose features have higher resolu-
tion. We also combine the 3D GCN with multi-scale kernels to
increase the diversity of features. Since thin structures may dis-
appear in deep intermediate layers, which could limit the seg-
mentation accuracy. To improve the network robustness, we use
tailored RSD (Huang et all, P016) modules to randomly bypass
some layers, which are illustrated in Fig.B.

In the decoder part, CVSB aims to detect all the vessels
belonging to the coronary, and provides vascular features for
AVCB. The AVCB aims to distinguish arteries from veins. It
takes features at different resolutions from the CVSB and con-
catenates them with its own extracted features to pass forward.
In this way, the branch can pay more attention to learning the
discriminative features between arteries and veins, without con-
sidering the background area. It contributes to accelerating net-
work convergence and improving performance. For this pur-
pose, we only calculate the loss of the foreground area (artery
and vein) during the training process in AVCB. Therefore, the

objective function of CVSB is defined as:

N
mgin Zl: Lrop(f(xi30),y7), ey

where N is the number of training data. The objective function
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of AVCB is defined as:
N
m;n;&m(fu,-;e),y,-). )

In the inference stage, the CVSB uses the prediction results to
help the AVDC filter out the background area, generating the
final segmentation results.

On the one hand, the IVRN can improve vascular detection
ability, finding as many coronary vessels as possible. On the
other hand, it can focus on distinguishing between arteries and
veins in the foreground, reducing the difficulty of the multi-

label segmentation task.

3.2. Topology-based vessel refinement network (TVRN)

We noticed that the IVRN may produce inconsistent segmen-
tation results along the same vessel in some cases. It is due to
the image features are mostly based on intensity and anatomy,
ignoring the topology consistency of the vessels themselves.
This motivates us to design an additional network, TVRN, to
revise incorrect segmentation results by taking advantage of
structural features to maintain topological consistency. The
TVRN consists of two encoders and one decoder, as shown in
the bottom of Fig.ll. Two encoders learn morphological features
and image features, respectively. All the features from both en-
coders are concatenated and forwarded to the decoder to output
the corrected results. The main contributions lie in the encoder
part. The morphology feature branch (MFB) aims to learn ro-
bust structural features from various vascular shapes. Specif-
ically, we feed the recognition results of coronary artery and
vein from IVRN to MFB. These results are inferred by IVRN
using models at different epochs, which increases the variety of
input. These various vascular shapes, from completely unrec-
ognized results to fully recognized results, can help the MFB to
learn robust structural features.

Meanwhile, the image feature branch (IFB) extract image
features as complementary to help the refinement. During train-
ing, we augment input images by changing vascular HU values
in the original images. There are two methods to augment the
original images. The first method involves reducing the HU

value of coronary arteries, while the second method focus on

enhancing the HU value of coronary veins. They all aim to
simulate imperfect scans that have similar HU values for ar-
teries and veins. Specifically, we first use the original image
and its corresponding labels to calculate the mean HU values of
coronary arteries and veins. We then obtain the difference be-
tween these two mean values. To vary the vascular HU values,
we set a range of ratios for the augmentation operation and ran-
domly select a ratio within this range, which is then multiplied
by the above difference. Finally, we apply the resulting value to
either enhance the HU value of coronary veins or decay the HU
value of coronary arteries, with a 50% chance for each option.

The implementation follows the formula:

HUdiff = mean(HUartery) —mean(HU ), 3)
imageariery—decay = imageori — HUgisr * ratio » mask,, — (4)

imagevein—enhance = imageori + HUdiff * ratio x maSkv’ (5)

where image,,; is the original image; ratio € (1,2); mask, repre-
sents the coronary artery mask and mask, means the coronary
vein mask.

The objective function of TVRN is defined as:
N
min Zl Lroo(f(siv 40,7, (©)

where s; € S, & € X, and X is an augmented set of X by varying

HU values.

3.3. Inverse distance weighted dice loss (IDD)

weights of 1DD loss
21113W 821aM 40 S)yBIam

Fig. 4. Illustration of the weights of IDD loss (left) and the weights of wDice
metric (right) with respect to different cross-sections of a vascular branch.
The two weights are designed differently. The weight of IDD loss for a
vascular voxel is based on its distance to the vascular boundary. Thus, the
weights can be different in a cross-section, voxels closer to the centerline
have smaller weights. While the weights of wDice metric are calculated
based on the thickness of the cross-section. Thicker branches have smaller
weights. The maximum weights are indicated in red, while the minimum
weights are indicated in blue.
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As mentioned in the previous subsections, we design an in-
verse distance weighted dice (IDD) loss to optimize our net-
works IVRN and TVRN, in order to preserve more thin struc-
tures and obtain accurate vascular edges. The left side of Fig.&
illustrates the proposed inverse distance weights. Voxels closer
to the vascular edge are set to larger weights, and vice versa.
The voxels in the center of the thickest vessel have the smallest
weight.

We discuss how to generate these inverse distance weights.

First, a 3D euclidean distance transform 2

is used to generate
distance transforms of vessels. Each vascular voxel has a dis-
tance to the nearest boundary. Then, the distance map is nor-
malized and transformed into an inverse distance map, so that
voxels of thin structures and vascular edges have larger weights.
The weights of background voxels are set to zero. We no-
ticed that if the weights on boundaries are much higher than the
neighboring background, the learned model tends to overseg-
ment the vessels. Thus, we use a gaussian filter to smooth the
gap between the vascular edges and nearby background regions
to suppress the thickening of the vessels. Distance maps of the
coronary artery and vein are generated separately by performing
the above steps. Finally, the two distance maps for the coronary
artery and vein of each case are integrated and the background
voxels of zero weight are reassigned to a small weight based
on the following considerations. In our method, a preprocessed
CCTA ROI has dimension of 144*208*208. This ROI has over
6 million voxels, while the number of voxels belonging to the
coronary artery and vein is less than 300000. accounting for
only 5% of the total volume. Given that this is a typical small-
target segmentation task, where both the foreground and back-
ground regions need to be identified, we have assigned a small
empirical weight of 0.05 for the background. This weight is de-
termined by considering the proportion of foreground and back-
ground voxels. Generation process is described in algorithm
in detail. Our distance map is different from the one proposed
in (Wang et all, P0194), we believe that setting larger weights

near the vascular edge is beneficial to maintaining the shape of

2https:// github.com/seung-lab/euclidean-distance-transform-3d/

Algorithm 1: The generation process of the inverse dis-
tance weights.
Input: Ground-truth labels Y

for vessel € (artery, vein) do
1.distance transform: calculate the 3D euclidean

distance transform of vessels and obtain distance
map D;

D-min(D) .
max(D)—min(D)°
3.inverse distance map: D; = 1.5 — Dy;

4 nonlinear transformation: D; = ¢Pt/maxDn-1.
5.smoothing: background voxels are set zero weight,
then use gaussian filter to smooth D; to get Dg;

2.distance map normalization: Dy =

end

6.combine Dy s for artery and vein, and assign a small
weight (0.05) to the background voxels with zero
weight to obtain the final distance map Dp;

return The inverse distance map Dp.

the vessel. If the segmentation branches are too thick, they will
be prone to adhesion.

By integrating the inverse distance weight map into the dice
loss, the IDD loss is defined as follows:

d 2% 38| Pre * Yie * di

K 2 K .2
c=1 Zk=l pk,c * dk + Zk=l yk,c * dk

where ¢ € C denotes c-th class, k € K represents k-th voxel in

Lrpp=1-(

)Co (D

the image, p € P means predictions by the network, and d € Dp

are the inverse distance weights.

3.4. Implementation details

We employ similar encoder-decoder backbone for both
IVRN and TVRN and use resblocks to extract robust features.
In the resblock, a convolution layer, batch normalization layer
and relu layer form a base layer, and multiple base layers are
connected by using residual connections. In the encoder of
IVRN, the first group of features is extracted by 3 * 3 % 3 con-
volutions and 3D GCN with kernel sizes of 7 and 5, respec-
tively. These features are concatenated to pass forward. The
second group of features is extracted by 3 * 3 * 3 convolutions
and 3D GCN with only a reduced kernel size of 5 because it
has a halved resolution. All following layers in the encoder and
decoders use 3 * 3 * 3 convolutions. In the training of IVRN,
we first fix the parameters of the AVCB to train the encoder and
the CVSB. When the CVSB tends to converge, all parameters
of the IVRN are updated together. In the TVRN, the inputs of
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MFB are randomly sampled from different vessel recognition
results by the AVCB, i.e. 20% fully recognized results with
minimum errors, 60% results with clear errors, and 20% com-
pletely unrecognized results. For the RSD modules in the [IVRN
and TVRN, 0.875, 0.75, and 0.625 are set for the living rate.
To learn more discriminative features of coronary artery and
vein, we feed the network a complete CCTA ROI image in-
stead of some randomly cropped cubes. Specifically, in data
preprocessing, the CCTA image (average original resolution
0.41 x 0.41 x 0.51 mm?) is resampled to isotropic resolution
of 0.9 mm, and then a heart localization network (Wang_ et all,
207T) is employed to locate and extract the heart ROI of size
144*208%208. The intensities are normalized by 2048 and
clamped between -1 and 1. During the training process, sev-
eral data augmentation techniques, including image translation,
rotation, flipping, scaling and HU value shifting, are randomly
performed to increase data varieties. Segmentation results are
post-processed by removing isolated components smaller than a
certain threshold (800 mm? in the experiments). All models are
implemented in Pytorch and trained on 8 Tesla V100 GPUs with
32 GB memory. We use the Adam optimizer with the learning

rate of 1073 and the maximum epoch is set to 2000.

4. Experiments
4.1. Dataset and metric

We conduct extensive experiments to evaluate our method
by using a multi-center dataset of 700 CCTA images. These
images were acquired by different CT scanners, including
the Siemens SOMATOM Definition, the Siemens SOMATOM
Force, the GE Discovery, the GE Revolution, and the Philips
IQon-Spectral CT. The in-plane resolution ranges from 0.3 mm
to 0.6 mm and the slice thickness ranges from 0.5 mm to 0.7
mm. The in-plane image size is 512x512, while the number of
slices in z-axis varies from 200 to 500. Of these 700 CCTA
images, 400 cases are used for training, 100 cases for valida-
tion and 200 cases for testing. Each data was annotated on
the SenseCare platform (Duan_efall, P020) by two experienced

doctors, one doctor with 7 years of clinical experience and one

specialist with 13 years of experience in cardiology. Two doc-
tors worked together to discuss any disagreement and agreed
to any changes to update the annotation. The annotations in-
clude both coronary arteries and veins, with detailed labeling
of branches with diameters as small as 0.5 mm (equivalent to
just one pixel). The samples were divided into "easy cases" and
"hard cases" based on the difference between coronary arterial
and venous intensities. Specifically, cases with a difference of
less than 150 HU were classified as hard cases, while those with
a larger difference were classified as easy cases. Based on this
threshold, there were 494 easy cases and 206 hard cases. We
randomly selected 100 hard cases and 100 easy cases to form
the testing dataset and the training and validation dataset com-
prise 106 hard cases and 394 easy cases. Including more hard
cases can better highlight the advantages of our method in chal-
lenging scenarios. Therefore, we focus on evaluating the perfor-
mance of models on the hard set in the following subsections.
We adopt several metrics to quantify the results, including
the centerline recall (cl-rec), precision (cl-pre), and overlap (cl-
ov) defined in (Schaap et all, Z009), a weighted Dice (wDice)
coefficient and the commonly used 95% HD for segmentation
task. The centerline metrics can evaluate the precision of the
extracted vessel tree, while wDice and 95%HD can measure
the accuracy at the voxel level. The wDice is proposed because
we noticed that the traditional Dice could be easily affected by
subtle errors of thick vessel branches but insensitive to clear
errors on thin branches. However, the thick vessels are easier to
segment than the thin ones in practice. Therefore, we design the
wDice so that thin vascular structures can get a higher weight
than thick branches. In order to differentiate the weights of IDD
loss, we show the weights of wDice in the right of Fig.@ for
comparison. The definition of wDice is as follows:
2% Yy Pr ¥ Vi ¥ Wi
25:1 Pi * Wi + Z/{i] )’i * Wi '

where wy, € W represents the weighting index of k-th voxel. We

wDice =

®)

compute W in three steps. (1) We calculate the distance trans-
form D of vessels as mentioned in Sec.33, and get the inverse
map D;,, = 1/D + 1. (2) The centerline points are extracted

(Safaet-all, 2000) from the ground truth labels. (3) We find the
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corresponding centerline point for each vascular voxel as the
closest one. Each vascular voxel is assigned the same weight
as the value of its associated centerline point in Dj,,, and the

background weights are set to one.
Besides, we also measure the percentage of veins which are
mistaken as arteries by computing arterial centerline false pos-
FP,

itive rate: a-cl-fpr = =%

- Here, the FP, represents the num-

ber of ground-truth centerline points of veins that are misclassi-
fied into arteries (at least one of the predicted arterial centerline
points found within a certain distance). T, represents the total

number of venous centerline points.

4.2. Contribution of IDD loss

We first investigate the contribution of the loss function in our
proposed method to the coronary artery segmentation task. We
employ a modified VNet (mVNet) backbone (Millefarief all,
20716) with three downsampling operations and RSD module
for comparison. Table 0 reports the results of mVNet super-
vised by several different loss functions, including traditional
Dice loss (DL), Hausdorff distance loss (Karimi_and Salcnd
ean, 2019) (HDL), radial distance loss (Wang et all, Z019a)
(RDL), and the proposed IDD loss. HDL (Karimi—and_Sald
cndear, Z0TY9) can protect targets’ boundaries and RDL (Wang
ef-all, 200192a) can recover thin tubular structures. From Table I,
we can see that DL has the lowest a-cl-rec rate with 0.8269 and
the highest a-cl-pre rate with 0.9102. This is because, on the
one hand, the imbalance problem exists not only between ves-
sels and background but also between thin branches and thick
branches. Some thin structures will be missed by this region-
based loss. On the other hand, since the extracted vessels are
thicker branches, there are fewer prediction errors, resulting in a
higher a-cl-pre rate. Compared to DL, HDL has improvements
in a-cl-ov and a-wDice, which means it can segment more de-
tails. RDL and IDD loss focus on thin structures, placing higher
weights on the small targets. The difference between these two
loss functions is the weights on the boundaries. At a similar
a-cl-rec level, IDD loss achieves about 4% improvements on
a-cl-pre and 5% improvements on a-wDice compared to RDL.

This is because that IDD sets larger weights near the vascular

edge, taking good care of thin branches with only a few vox-
els and preserving the boundaries of thick branches, simultane-
ously. IDD loss also achieves the lowest average 95% HD of
arteries (a-hd95), demonstrating its ability to preserve similar
shapes to the ground-truth labels and improve accuracy at the

vascular boundary, aligning with the goals of its design.

Table 1. Comparison of several different loss functions on the hard set.
They are achieved by the mVNet, supervised by the Dice loss (DL), Haus-
dorff distance loss (Karimi_and Salcudear, Z0I19) (HDL), radial distance
loss(Wang et all, 20193) (RDL) and IDD loss, respectively.

Methods a-cl-rec a-cl-pre a-cl-ov a-wDice a-hd93
(mm)

DL 0.8269 0.9102 0.8602 0.8481 6.8885
+0.1100 +0.0625 =+0.0779 +0.0619 +11.0489

HDL 0.8433 0.9078 0.8682 0.8547  6.0457
+0.1093 +0.0655 =+0.0778 +0.0569 +10.1133

RDL 0.9088 0.7999 0.8465 0.8135  5.6290
+0.0723 +0.0864 =+0.0641 +0.0427 +6.8446

DD 09111 0.8306 0.8647 0.8619 5.1610
+0.0737 +0.0844 =+0.0613 +0.0420 +7.2966

More qualitative results are illustrated in Fig. B, which shows
both the segmentation results and prediction errors. We can
see that the segmentation results of mVNet with DL miss a lot
of details and even break in the thick branches. mVNet with
HDL or RDL is better in completeness but still misses some
thin structures. Please note that mVNet with IDD can even
yield more details than ground-truth labels on thin branches.
However, these extra branches may lead to a decrease in a-cl-
precision, which is consistent with the results in Table . Pre-
diction errors mainly exist at the boundaries of coronary ves-
sels. Slight differences will not affect the results, but if the
branches are too thick, they will be prone to adhesion, like the
prediction of case3 produced by mVNet with RDL. Overall, ex-
perimental results show that mVNet with IDD loss is suitable
to improve the detection ability of coronary vessels. In the fol-
lowing subsections, mVNet denotes the method using IDD loss

by default.
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mVNet wo RSD

mVNetw DL

mVNet w HDL

mVNet w RDL

mVNetw IDD

GT

casel prediction errors case2

prediction errors case3

TITTTT

prediction errors cased

prediction errors

distance and color matching table in prediction errors
0 1 10 20 30 40 50 60 70

Fig. 5. Qualitative results of coronary artery segmentation. Each row is produced by a different method. Each two columns corresponds to a case,
representing the segmentation result and its surface distance errors compared to the ground-truth (GT) label. The color map is plotted in the bottom. The

red in the prediction error columns represent the surface errors of at least 70.

4.3. Different settings of AVDNet

To demonstrate the effectiveness of all components of AVD-
Net, we conduct multiple experiments with different settings.
The baseline model is mVNet. Table. @ shows the results on
hard set under different settings. In the first two rows of Table I,
we only segment the arteries and merge veins into the back-
ground label. These two rows show that the RSD module can
help improve the a-cl-rec, a-cl-ov, and a-wDice significantly.
From qualitative examples in the first row of Fig. B, we observe
that mVNet without RSD tends to undersegment arteries, espe-
cially the thin branches. Although mVNet without RSD has a
lower probability of false positives, leading to higher a-cl-pre
and lower a-cl-fpr, a more complete coronary artery tree is de-
sired for subsequent plaque and stenosis diagnosis in practice.

mVNet-av and IVRN-onedec directly recognize the voxel into

one of the three classes including background, artery and vein.
The difference between mVNet-av and IVRN-onedec is just in
the GCN module. The results of wDice and 95%HD show im-
provements with the GCN module. Comparison between the
IVRN wo GCN and IVRN further attests to the efficacy of the
GCN module. Compare to the methods for segmenting artery
only, simultaneous artery and vein segmentation can reduce the
a-cl-fpr while maintaining the a-cl-rec. In the IVRN, we use
two decoders to split the multi-class segmentation task into two
subtasks, and the results show that IVRN equipped with two de-
coders have significant improvements on the vein segmentation
compared to the IVRN with one decoder (IVRN-onedec). This
is because that the low response of coronary vein in CCTA im-
ages and large intersubject variance, feature learning on coro-

nary veins is much more difficult than that of arteries. The coro-
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Table 2. Effect of each component in the AVDNet. The results are generated on the hard set, by the mVNet without RSD module (mVNet wo RSD), mVNet
only segmenting artery (mVNet-artery), mVNet segmenting artery and vein simultaneously (mVNet-av), [IVRN segmenting artery and vein directly in one
decoder (IVRN-onedec), IVRN without GCN module (IVRN wo GCN), IVRN supervised by the wDice loss (IVRN-wDice), IVRN, IVRN with the number
of base feature is 16 (IVRN-base16), IVRN followed by a mVNet for refinement (IVRN+mVNet) and AVDNet, respectively.

. . a-hd95 v-hd95
Methods a-cl-rec  a-cl-pre a-cl-ov a-cl-fpr v-cl-ov  a-wDice v-wDice
(mm) (mm)
0.8398 0.8633 0.8455 0.0836 0.8374 6.8593
mVNet wo RSD
+0.1013  +0.0794 +0.0754  +0.0730 +0.0572 +8.6271
09111 0.8306 0.8647 0.1264 0.8619 5.1610
mVNet-artery / / /
+0.0737 +0.0844  +0.0613  +0.0968 +0.0420 +7.2966
VNet 0.9169 0.8404 0.8726 0.0971 0.7293 0.8668 0.8570 5.1903 11.7618
mVNet-av
+0.0738  +0.0793  +0.0567 +0.0803 +0.1072 +0.0377 +0.0464 +8.2441 +11.2895
0.9181 0.8414 0.8748 0.0885 0.7408 0.8687 0.8656 4.1543 11.6246
IVRN-onedec
+0.0642  +0.0776  +£0.0558 +0.0789  +0.1029 +0.0367 +0.0492 +6.0040 +12.0214
0.9031 0.8274 0.8597 0.0857 0.7653 0.8611 0.8724 5.5022 7.4888
IVRN wo GCN
+0.0695 +£0.0816 +0.0583 +0.0703  +0.0927 +0.0393 +0.0425 +£7.1055  +8.4008
) 0.8615 0.8815 0.8679 0.0970 0.7444 0.8454 0.8592 5.2166 10.2862
IVRN-wDice
+0.0737  +0.0800 +0.0593 +0.0960 +0.0962 +0.0442  +0.0402 +8.2176 +11.1169
VRN 0.9056 0.8524 0.8747 0.0637 0.7866 0.8698 0.8795 4.2516 6.0932
+0.0720  +£0.0740  +0.0564 +0.0586  +0.0892  +0.0335 +0.0382 +6.1170  +6.9813
0.9093 0.8455 0.8722 0.0725 0.7836 0.8674 0.8813 4.9014 7.3040
IVRN-basel6
+0.0837 +0.0693  +£0.0620 +0.0704 +0.0875 +0.0449  +0.0369 +8.3712  +9.4342
0.9094 0.8414 0.8701 0.0596 0.7874 0.8552 0.8738 4.3501 5.9239
IVRN+mVNet
+0.0718  +£0.0767 +0.0578  +0.0589  +0.0876 +0.0332 +0.0364 +6.5160  +6.7688
AVDNet 0.9256 0.8448 0.8807 0.0520 0.8037 0.8753 0.8844 3.4045 5.8186
e
+0.0571  +0.0730 +0.0537 +0.0481 +0.0828 +0.0326 +0.0366  +5.8828  +7.2026

nary vessels segmentation branch of IVRN wo GCN treats coro-
nary artery and vein as the same category, which is beneficial
to improve the coronary vein detection rate. We also replace
the IDD loss with wDice loss to supervise IVRN, thus explor-
ing the impact of different weights on the results. The results
show that the IVRN-wDice have poor results than the [IVRN
with IDD loss (IVRN) on both arteries and veins, especially for
the wDice and hd95 of the veins, which decrease by 2.3% and

increased by 68.8%, respectively.

The TVRN as the second learning stage contains two en-
coders MFB and IFB to refine the results of IVRN. In our
method, the total number of parameters of [IVRN (2935840) and
TVRN (2905022) is 5840862. To demonstrate the improve-
ment of TVRN comes from the design of TVRN itself, and

not from the increase of network parameters, we increase the

number of initial feature maps of the IVRN to increase its total
number of parameters to 5215948, whose results are shown in
the row named "IVRN-base16" of Table.l. We can see that the
results of IVRN-basel6 do not show any improvements com-
pared to the original IVRN. Another ablation study replaces
the TVRN with a mVNet which has a similar structure as the
MFB+decoder in TVRN, but only inputs the recognition masks
with a single state to extract morphological features. Its results
are shown in the row named "IVRN+mVNet" of Table.l. There
are obvious differences between the results of IVRN+mVNet
and AVDNet. The performances of IVRN+mVNet are even
not better than those of the original IVRN. We believe that the
key to TVRNs improvement lies on the contribution of MFB,
which can learn to encode the topological consistency implic-

itly from the recognition masks in different states of IVRN.
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Table 3. More testing results on the easy set. Most differences are not significant and we only compare mVNet-artery, mVNet-av, and AVDNet.

) ) a-hd95 v-hd95
Methods a-cl-rec  a-cl-pre a-cl-ov a-cl-fpr v-cl-ov  a-wDice v-wDice
(mm) (mm)
0.9420 0.8738 0.9041 0.0628 0.8838 2.4651
mVNet-artery / / /
+0.0519  +0.0615 +0.0393  +0.0665 +0.0237 +2.3985
mVNetoa 0.9455 0.8761 0.9076 0.0510 0.7445 0.8852 0.8522 2.2597 10.9508
-av
+0.0461  +£0.0596 +0.0407 +0.0574 +0.1106 +0.0226  +0.0538 +2.6810 +13.3822
AVDNet 0.9470 0.8763 0.9081 0.0314 0.7998 0.8876 0.8732 2.1022 5.9922
e
+0.0439  +0.0664 +0.0428 +£0.0435 +0.0988 +0.0219 +0.0492 +2.8215  +9.5264

By using TVRN, AVDNet achieves the best results in a-cl-ov
with 0.8807, v-cl-ov with 0.8037, a-cl-fpr with 0.0520, a-wDice
with 0.8753, v-wDice with 0.8844, a-hd95 with 3.4045 and v-
hd95 with 5.8186, whose improvements are up to 0.9%, 10.2%,
46.4%, 1.0%, 3.2%, 34.3%, and 50.5% compared to mVNet-av.

Furthermore, we utilize the Estrada Index(De Ta Pena ef all,
PO07), a topological index of folding or 3D compactness for
a graph, to measure the improvement on topology consistency
by using TVRN. The Estrada Index was originally proposed to
measure the compactness of molecular structures. It has been
extended to all undirected graphs, including trees. In our study,
we introduce a new metric for topology consistency by com-
puting absolute difference between the Estrada Index of the
segmentation result and the annotation, assuming that smaller
difference corresponds to better topology consistency. Firstly,
we extracted the skeletons of the arteries from the segmentation
and constructed a tree based on these skeleton points. Next, we
formed a graph using the edges of the tree and calculated the
Estrada Index for this graph. As a result, each case in the test-
ing dataset will be associated with an Estrada Index for a given
method, collectively forming a group. Different methods have
different groups of Estrada Index values. We then measured the
case-by-case absolute difference between IVRN and labels, as
well as between AVDNet and labels. The mean value and stan-
dard deviation were computed based on two sets of absolute
differences (IVRN and labels vs AVDNet vs labels), resulting
in 174.0388+184.6441 and 152.6851+177.4118, respectively.
Furthermore, out of the 100 hard cases, AVDNet exhibited a

lower absolute difference in Estrada Index compared to [IVRN

in 64 cases, indicating clear improvement by AVDNet in terms
of topology consistency.

Some methods such as mVNet-artery, mVNet-av, and AVD-
Net are also tested on the easy set and their results are reported
in Table. B. CCTA images in the easy set have a strong intensity
distinction between coronary artery and vein, and its tested re-
sults are easily satisfying. As we can see, the main differences
between the methods are located in a-cl-fpr, v-cl-ov, v-wDice
and v-hd95. There is a strong link between these four metrics.
When more coronary veins can be correctly predicted, the val-
ues of v-cl-ov, v-wDice and v-hd95 increase, while the a-cl-fpr
value decreases. By integrating the coronary vein segmentation
into the coronary artery segmentation task, wrong segmentation
of veins into arteries is alleviated. In Table. B, compared with
mVNet-artery, mVNet-av improves the a-cl-ov by over 8% and
AVDNet improves by 50%. Different from the easy set, images
in the hard set have weak intensity distinction between coronary
artery and vein, making it difficult to distinguish coronary artery
from the vein if the voxels cross each other in close vicinity. In
Table. D, the a-cl-fpr of mVNet-artery ups to 0.1264.

Due to the limited space and the importance of coronary
artery, we just place parts of results of coronary vein in the main
text. More comprehensive results including a-cl-rec, a-cl-pre,
a-cl-ov, a-cl-fpr, v-cl-rec, v-cl-pre, v-cl-ov, v-cl-fpr, a-wDice,
v-wDice, a-hd95 and v-hd95 can be found in Table.S2 and Ta-
ble.S3 in the supplementary materials.

More qualitative results on coronary artery and vein segmen-
tation are shown in Fig. B. From the magnified parts of original

images, we can see that all coronary arteries and veins have
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(a) original image (b) mVNet-av (c) IVRN wo GCN (d) IVRN (e) AVDNet () GT

Fig. 6. Qualitative results of coronary artery and vein segmentation. Some parts of the original image are magnified for a better view of the arterial and

venous vessels. The highlighted regions show the advantage of our method in disentangling arteries and veins when they are difficult to distinguish in the
image. Red: artery; blue: vein.

similar intensity in the local location, which can easily lead to dictions in Fig. B, in order to compare the methods intuitively.

misclassification. We also zoom in on some parts of the pre- Consistent with those quantitative results (such as a-cl-fpr and



Table 4. Comparisons with the state-of-the-art methods on the hard set, including Attention-FCN(Lei_ef_all, 2021l), Dense-UNet(Pan_ef_all, 2021), and
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FFR-UNet(Song et all, 2127). For a fair comparison, they all use IDD loss during the training process.

15

Methods a-cl-rec  a-cl-pre a-cl-ov a-cl-fpr v-cl-ov  a-wDice v-wDice a-hd95 v-hd9s
(mm) (mm)

Attention-FCN  0.8096 0.8022 0.8007 0.0910 0.6213 0.8290 0.7947 10.7667 15.0600
with IDD +0.1159  +£0.0805 +0.0797 +0.0785 +0.1151 +0.0576  +0.0631 +12.4486 +10.6353
Dense-UNet 0.8658 0.7827 0.8124 0.1102 0.6501 0.8469 0.8310 7.9494 14.3192
with IDD +0.1162  +£0.0886 +0.0737 +0.1031 +0.1080 +0.0570 +0.0552  +9.9011 +11.3017
FFR-UNet 0.7658 0.6249 0.6703 0.2363 0.3343 0.7525 0.5064 26.7910 48.8348
with IDD +0.1403  +0.1334  +0.1050 +0.1802 +0.1855 +0.0904 +0.2003  +33.5016  +36.7690

AVDNet 0.9256 0.8448 0.8807 0.0520 0.8037 0.8753 0.8844 3.4045 5.8186
+0.0571  +£0.0730  +£0.0537 +0.0481 +0.0828 +0.0326 +0.0366  +5.8828 +7.2026

v-cl-ov) in Table. @ and Table. B, mVNet-av achieves the worst
results and AVDNet has the best performance in Fig. B. Com-
pared with IVRN, TVRN takes topology consistency into ac-
count and further improves the ability to distinguish artery and
vein in close vicinity. AVDNet combines IVRN and TVRN to

produce the most robust and accurate predictions.

4.4. Comparisons to state-of-the-art methods

We compare our method with some latest coronary artery
segmentation methods, including Attention-FCN(Lei_ef all,
2020), Dense-UNet(Pan_ef _all, P021) and FFR-UNet(Song
ef-all, 2027). We re-implemented these methods accordingly.
For a fair comparison, all methods were extended to segment
the coronary artery and vein simultaneously, and IDD loss was
employed for optimization. Attention-FCN(Lei“ef_all, 2020)
and Dense-UNet(Pan_ef-all, Z002T) are trained by 512 * 512 32
and 512%512+16 sliding windows along the z-axis, respectively.
FFR-UNet(Song et all, P027) filtered out the non-coronary
slices and cropped the images into 64 * 64 * 64 cubes as input.

The comparison results are shown in Table B. In contrast to
the training strategies of cropped patches, we feed a complete
heart ROI to the AVDNet by downsampling the CCTA images.
On the one hand, the downsampled input makes the network
learn better global features and predict more continuous coro-
nary arteries and veins. On the other hand, network conver-
gence is accelerated. Note that all the metrics are computed

in the original resolution. We can see that there are signifi-

cant gaps between these comparing methods and the AVDNet
in Table B. The AVDNet achieves the best performance on all
metrics, especially maintaining a higher vascular detection rate

and lower false positives.

4.5. Prediction results on ASOCA dataset

We further validate our method on the Automated Seg-
mentation of Coronary Arteries (ASOCA) Challenge dataset.
ASOCA provides a publicly available dataset of 40 CCTA im-
ages, comprising 20 healthy cases and 20 patients with con-
firmed coronary artery disease. Each case was annotated into
two classes, coronary artery and background, by three annota-
tors, which is not available for training the AVDNet. There-
fore, we use the trained AVDNet model from our dataset to
infer the ASOCA data. Ten prediction results are illustrated
in Fig. . We compare the results of left coronary artery
(LCA) and right coronary artery (RCA) between our predic-
tions and the ASOCA annotations. We can see much more de-
tails of the arteries in the inference results from our method
than in the ASOCA annotations, which leads to an average
Dice score of 0.5304 and an average 95% HD of 20.8647
mm. In the last row of Fig. [, we show the integrated predic-
tion results for these examples, including left coronary artery,
right coronary artery, and coronary vein. Our prediction re-
sults, including both arteries and veins, of 40 ASOCA data
are available at https://github.com/WennyJJ/Coronary-Artery-

Vein-Segmentation for follow-up research.


https://github.com/WennyJJ/Coronary-Artery-Vein-Segmentation
https://github.com/WennyJJ/Coronary-Artery-Vein-Segmentation
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Fig. 7. Evaluation on the ASOCA dataset. We show the extracted centerlines of segmentation inferred by our AVDNet and of the ASOCA annotations
(Anno-Labels). Notably, the centerline points are dilated for a better view. LCA-CL: centerlines of left coronary artery; RCA-CL: centerlines of right
coronary artery. The last row shows 3D views of our prediction for artery and vein (AV). The RCA is displaced in transparency for clearer identification.

Red: artery; blue: vein.

4.6. A real-world hard case study

To further elucidate the relationship between coronary artery
segmentation and subsequent steps for diagnosis, we present
a real-world hard case study with similar intensities between
coronary arteries and veins (shown in Fig.R). The first row of
Fig B displays segmentation results generated by the mVNet-
artery, which directly segments coronary arterial branches from
the image. Due to the similar intensities, many coronary veins
are misidentified as coronary arteries (indicated by green-color
arrows), such as the vessels between the RCA and LCX or those
at the end of the OM. False positive vessels located between the
RCA and LCX cause adhesion of the left and right coronary
artery trees. When centerlines are extracted using the shortest
path algorithm(Safo"ef"all, 2000U), only one vessel tree can be
obtained and the LCX (shown in the first row, second column
of Fig.R) and the LM (shown in the first row, forth column of
Fig.B) miss their centerlines. The failure in centerline extraction

can mislead the curved planner reconstruction (CPR). Since in

clinical practices, both plaques and stenosis are diagnosed and
assessed on CPR images, an experienced doctor has to manu-
ally correct the segmentation and the trace of centerlines in this
case for an accurate diagnosis, or the patient may be asked to
retake the CT scan for a better quality image. On the contrary,
the AVDNet produces significantly better segmentation results
(shown in the second row of Fig.B) in such a complex scenario,

which can benefit both the patient and the doctor.

5. Conclusion

In this paper, we integrated coronary vein segmentation into
the artery segmentation task to address the issue of false posi-
tives in arterial prediction results. A cascaded network named
AVDNet was proposed for coronary artery and vein segmenta-
tion, which consists of IVRN and TVRN. IVRN produced the
initial segmentation results and TVRN revised the misclassifi-
cation parts. Furthermore, IDD loss was designed to segment

more thin vessel branches and protect vascular edges. Experi-
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mVNet-artery

AVDNet

(a) prediction-viewl

(b) centerline-viewl (c) prediction-view2

(d) centerline-view2

Fig. 8. A real-world hard case with similar intensities between coronary arteries and veins. The results are inferred by the mVNet-artery and the AVDNet.
(a) prediction shown on a certain perspective (viewl) (b) the extracted centerline from prediction shown on a same perspective with (a) (c) prediction
shown on another perspective (view2) (b) the extracted centerline from prediction shown on a same perspective with (d). All centerline points are dilated
for a better view. Red: artery; blue: vein; grey: centerline; green arrows: the misclassified parts by the mVNet-artery

ments were conducted on a multi-center dataset and methods
were evaluated by different metrics. Quantitative and Qual-
itative results demonstrated that the proposed AVDNet has a
strong ability to distinguish coronary artery and vein in CCTA
images with whether strong discrimination of arterial and ve-

nous intensity values or weak ones.
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