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Abstract. Automatic and accurate coronary artery labeling technique
from CCTA can greatly reduce clinician’s manual efforts and benefit
large-scale data analysis. Current line of research falls into two gen-
eral categories: knowledge-based methods and learning-based techniques.
However, no matter in which fashion it is developed, the formation of
problem finally attributes to tree-structured centerline classification and
requires hand-crafted features. Here, instead we present a new concise,
effective and flexible framework for automatic coronary artery label-
ing by modeling the task as coronary artery parsing task. An intact
pipeline is proposed and two paralleled sub-modules are further designed
to consume volumetric image and unordered point cloud correspondingly.
Finally, a self-contained loss is proposed to supervise labeling process. At
experiment section, we conduct comprehensive experiments on collected
526 CCTA scans and exhibit stable and promising results.

Keywords: Coronary artery labeling · Parsing · Point cloud · Deep
learning.

1 Introduction

Cardiovascular disease has long been a leading death reason worldwide. Coronary
computed tomography angiography (CCTA) as a non-invasive imaging technique
for diagnosis of coronary artery diseases has been widely used by physicians and
radiologists. In a standard workflow, one of the most crucial and fundamental
step is to correctly label branches by their anatomical names. Automatic and
accurate coronary artery labeling technique can greatly reduce clinician’s manual
efforts and benefit large-scale data analysis.
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Among multiple concerns in automatic coronary artery labeling, the main
challenge related is large individual variances among subjects. Current line of
research falls into two general categories: knowledge-based methods and learning-
based techniques. However, no matter in which fashion it is developed, the for-
mation of problem finally attribute to tree-structured centerline classification.
Previous methods are either matching target centerlines with pre-defined refer-
ence model [1,3,4,15] or do segment-level classification using hand-crafted fea-
tures [12,13]. Most recently, Dan wu et al. [13] employed bi-directional tree-lstm
to fully exploit topological information contained within the tree-structure using
some hand-crafted features. Now the question we proposed here is: Does tree-
structured centerline contains all useful information? Especially when the input
features are manually collected. Clinically, the anatomical naming of a coronary
artery relies on it’s functional effect that is for which cardiac field it supplies.
Therefore, we conjecture that the scope of current methods may not contain
all informative information and thus may be sub-optimal. Considering the fact
that centerlines are commonly extracted using minimal-path or skeletonization
algorithm from pre-segmentated masks or similar pixel-level representative space
[5,6,8,12,16], so instead of dealing with centerlines, we here take a step back and
reverse the order. We model the task as the coronary artery parsing problem and
directly operate on coronary artery masks and then map back to centerlines for
subsequent utilization. By doing so, we encode not only topological informations,
but also morphological information and geometrical information as a whole. And
the training ROIs are extensively enlarged comparing with pure centerline points.
Moreover, the new pipeline can been implemented in an end-to-end deep-learning
fashion without hand-crafted engineering.

In this paper, we demonstrate a new pipeline for automatic coronary
artery labeling by constructing the task as parsing issue. Specifically, two sub-
frameworks are proposed to consume volumetric images and point clouds cor-
respondingly. A universal loss and voting strategy is designed for both sub-
frameworks. Finally, we evaluate our proposed ideas and frameworks on collected
CCTA scans and demonstrate promising results.

2 Methods

2.1 Mask Space and Input

Under mask space, all inputs have been readily divided and regrouped, thus
the complexity of the learning process is largely downgraded. Since acquisition
of coronary artery mask is also a prerequisite for extracting centerlines under
common circumstances, it is an straightforward and labor-saving choice to build
our framework on mask space instead of original space. In order to encode func-
tional information of coronary artery, the mask of whole cardiac has also been
extracted and merged with coronary artery mask. Then an isotropic patch with
fixed size is center-cropped at mass center of coronary artery mask as the final
input.
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Fig. 1. General workflow for coronary artery parsing.

2.2 Volumetric Coronary Artery Parsing

Unlike objects in natural images, coronary artery branches in CTA image are
revealed as tenuous and twisty tubular structure and they are all also tightly
connected. This character makes anchor-based two-stage parsing techniques a
failure in our case. Considering the fact that coronary arteries contain relative
consistent components, here we model the task as multi-label segmentation task.
In order to successfully extract structural information and stay robust against
large individual variances, the most essential insight is to keep the view of the
whole environment, that is the receptive field should contains whole input. So
instead of cutting input volume into multiple cubes, here we down-sample the
input to fit the memory. Due to the simplicity of mask space, large scale down-
sampling operation is acceptable. Figure 1 elaborates the overall workflow of our
proposed framework. As showed in Fig. 1, we employed a modified version of
V-net [14] as our parser. Any other effective architecture can also substitute this
backbone. During training, ground truth coronary artery mask is generated as
follows: we first annotate tree-structured centerlines in segment-level, then each
voxel in coronary artery mask is assigned with the same label as it’s nearest
centerline point. Since the problem formation has been set as multi-label seg-
mentation (pixel-level classification), multi-categorical dice loss is deployed to
supervise the learning process. Even though dice-loss provides a good supervi-
sion on categorical segmentation, it neglects geometrical and semantic informa-
tions. One of the most challenging issue under coronary artery mask parsing
is the chaotic predictions within a branch. Especially at bifurcation area where
multiple branches are bordered. In order to address this issue, a self-contained
loss called seg-consist loss is proposed. The intuition behind the loss design is
based on a prior cognition: points’ labels within the same coronary artery segment
should be consist. Formally, the loss is designed as:

Lossseg entropy =
N∑

n=1

λn

(∑
a∈An

−p(a|Sn) log2 p(a|Sn)
log2 |An|

)
(1)
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where An is the predicted label space for segment Sn and p(a|Sn) is the prob-
ability of predicting label a within segment Sn. In general, normalized entropy
of predicted labels within each segment is calculated, then entropies of all seg-
ments are weighted summed. We set λn = 1

N across our experiments to provide
equal attentions for all segments regardless of their sizes. In general, our final
loss function is defined as:

Loss = αLossmulti dice + (1 − α)Lossseg entropy (2)

α in Eq. (2) is experimentally set to 0.6.

2.3 Back to Centerline

Herein, a two-step voting strategy is developed naturally to map coronary artery
masks back to centerlines. Specifically, the label for the target segment is defined
as:

Si = mode{mode(Dij),mode(Dij+1)...mode(Dij+n)} (3)

Dij is the neighbor space of point j in segment i, In our framework, the neigh-
borhood is set as a 3 × 3 × 3 cube. To sum up, we perform a point-level voting
following by a segment-level voting. By doing so, the final labeling result is
impressively robust against noises and segmentation corruption. As long as the
majority group remains correct, the final label will be sound. After assigning
labels for all segments, segments with the same label will be extracted to com-
pose final branches. In order to keep branch from breaking apart under excep-
tional situation, one step post-processing is performed to connect two separate
segments if they have the same label and the segment between them is marked
with different label.

Fig. 2. Framework with point cloud input, voting step and loss calculation is omitted
for the simplicity.
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2.4 Point Cloud Extension

Despite the conciseness of proposed framework, it is in fact an computing and
memory hungry implementation. Down-sampling and crop operations are needed
to fit volumetric input into the GPU. The bottleneck causing this issue is the
existence of vast less-informative background voxels. So here we also formulate
parsing process from another perspective, instead of viewing input as volumetric
image, we treat foreground masks as points cloud and get rid of backgrounds.
Formally, we are aiming to assign k scores of k candidate categories for each
point in a disordered 3D points set {Pi|i = 1, ..., n}. By doing so, down-sample
and crop operations are no longer needed. Figure 2 displays point cloud version
of our framework. Here we deploy PointNet/PointNet++ [9,10] as our point
cloud parser. Since cardiac surface has already contains enough information,
we keep only surface of the cardiac mask in order to save memories and speed
up learning process. And above proposed seg-consist loss and two-step voting
steps can be swiftly transferred to point cloud version without modification.
Detailed comparisons between volumetric version and point cloud version are
demonstrated in experiment section.

3 Experiments

This section will be organized in 3 subsections. We first introduce our dataset and
metric used, then we present the configuration of our experiments and compare
our results with other existing methods. Finally we substantiate our proposed
ideas and heuristics by conducting ablation studies.

3.1 Dataset

We collect 526 multi-modality CCTA scans from multiple clinical institutes.
Masks for 280 collected images are manually annotated by radiologists using
self-developed annotation platform. Masks of remaining images are predicted
by the segmentation model trained with manually annotated masks. Then all
predicted masks are further scrutinized and revised by radiologists using anno-
tation platform. Tree-structured centerlines are extracted using modified version
of TEASAR [11]. Finally all centerlines are manually annotated in segment level.
Specifically, we annotated RCA, PLB(R/L), PDA(R/L), LM, LAD, LCX, D1–2,
OM1–2. All left-over segments are annotated as Others. Ground truth coronary
artery masks are then generated as described in Sect. 2.2. Besides coronary artery
masks, masks for whole cardiac are also collected, a model is trained using anno-
tations from MM-WHS challenge [17]. Then masks of all 526 images are acquired
increasingly using the similar strategy as mentioned above. The dataset is further
split into 200 training set and 326 test set.

Our final results are evaluated in two ways, firstly a branch-level precision are
judged manually by experts. Then a segment-level statistic result is evaluated
using precision, recall and f1 score.
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Table 1. Results of previous work comparing with ours, numbers here are the same
as those collected by Wu et al [13]. P represents precision and R stands for recall.
Our results reported here are in branch level, Ours-v is the volumetric version of our
methods and Ours-pc is the point cloud version.

Study Akinyemi
et al. [1]

Yang et al. [15] Gülsün et al. [4] Cao et al. [2] Wu et al.
[13]

Ours-pc Ours-v

Subject 52 58 37 83 44 (each
fold)

326 326

Metric R P P P P P P

LM 100.0 99.3 100.0 100.0 99.1 92.6 95.7

LAD(p/m/d) 97.4 93.4/86.8/93.4 99.2/97.1/100 93.6/85.8/95.4 96.9 99.7 99.1

LCX(p/m/d) 91.7 84.6/80.3 99.2/99.2/83.9 87.3/83.2 93.5 96.9 95.1

RCA(p/m/d) 98.9 97.8/94.1/92.7 100 85.1/82.3/92.5 96.0 96.9 97.6

D(1–2) 80.0 100/86.8 91.2/83.2 93.5/82.2 91.0 85.0 86.5

OM(1–2) 78.9 86.1/78.8 90.5/83.2 90.4/79.7 85.2 85.1 82.9

PLB(R/L) 86.5/ - 88.3/ - 91.2/89.7 89.8/85.7 82.7/65.9 94.0 95.5

R-PDA 65.0 94.1 94.8 96.6 79.8 87.5 89.6

3.2 Coronary Artery Mask Parsing

Volumetric input: As described in Sect. 2.1, we isotropically downsample
masks to spacing 0.8 mm. Then a patch with size 144 × 144 × 144 is cropped
at ROI. Then extracted patches are feed into the parser. Seg-entropy loss and
multi-dice loss co-supervise the training process. Point cloud input: Surfaces of
cardiac masks are extracted using marching cubes [7]. Points in coronary artery
mask are all saved. During training, 16384 points are sampled from each case,
Among these points, half are randomly sampled from the coronary artery mask
and others are sampled proportionally from the cardiac surfaces. All coordinates
are transferred to relative coordinates according to coronary artery’s mass cen-
ter and input masks’ labels are collected as extra features. Architectures for
pointnet and pointnet++ remain the same as in original work except that seeds
generated for pointnet++ are doubled due to the complexity of coronary artery
mask. Then the point cloud parser is trained under joint supervision of NLL loss
and seg-consist loss.

Table 1 shows results of our proposed framework comparing with other exist-
ing methods. Unlike other methods which are evaluated on relative small datasets
or tested with many folds, we here train on 200 images and inference on 326
unseen data. A stable and promising result is exhibited.

3.3 Ablation Studies

At this section, we report segment-level result to eliminate compensatory effect
of post-processing and potential manual deviation. Experiments are organized as
follows: (1) org-img: We firstly parse coronary artery directly from raw image
instead of mask space in order to demonstrate the complexity of the task in orig-
inal space. (2) cor: Secondly, we input on coronary artery mask without cardiac
masks to clarify the contribution of cardiac atlas information.(3) cor+car: Here
merge two coronary artery mask and cardiac mask as final input.(4)cc+loss:
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Table 2. Results of our ablation experiments. All metrics here are measured in segment
level. P represents precision and R stands for recall.

Metric org-img cor cor+car cc+loss pc pc+loss pc! pc!+loss

LM P 76.4 89.8 89.9 92.8 83.1 87.9 88.4 89.6

R 97.5 98.1 98.8 99.1 95.4 94.4 98.4 98.5

F1 85.7 93.8 94.1 95.8 88.8 91.1 93.1 93.8

LAD P 86.9 82.7 87.9 85.9 79.1 78.8 80.4 79.7

R 95.3 97.5 96.8 97.1 91.6 91.2 94.8 94.2

F1 90.9 89.5 92.1 91.2 84.9 84.6 87.0 86.3

LCX P 86.3 83.9 84.8 89.6 88.6 87.3 90.7 91.8

R 77.3 89.0 90.9 91.1 86.5 88.0 86.7 85.7

F1 81.6 86.3 87.8 90.3 87.5 87.7 88.7 88.7

RCA P 85.4 94.2 94.0 94.6 90.5 91.9 91.8 91.4

R 94.1 95.5 95.9 95.5 89.0 92.5 92.5 92.6

F1 89.5 94.8 95.0 95.1 89.8 92.2 92.2 92.0

D P 88.3 84.1 88.1 87.1 81.9 88.3 88.7 87.3

R 72.4 92.3 91.2 93.1 85.3 78.2 88.2 90.4

F1 79.6 88.0 89.6 90.0 83.6 83.0 88.4 88.8

OM P 78.2 82.9 84.7 87.2 88.2 86.8 84.7 85.5

R 47.6 84.4 80.9 84.5 68.9 71.0 79.8 84.0

F1 59.2 83.7 82.8 85.8 77.4 78.1 82.2 84.7

PLB P 91.4 91.3 92.0 93.9 81.2 89.6 90.1 90.3

R 90.5 93.8 92.9 92.7 92.6 88.4 88.7 91.1

F1 91.0 92.5 92.4 93.9 86.5 89.0 89.4 90.7

PDA P 85.3 82.9 82.2 84.4 81.2 72.8 76.9 79.9

R 72.8 80.6 81.8 84.7 68.3 86.3 83.4 83.8

F1 78.5 81.7 82.0 84.7 74.2 79.0 80.0 81.8

Avg. P 84.8 86.5 88.0 89.4 84.2 85.4 86.5 86.9

R 80.9 91.4 91.2 92.3 84.7 86.3 89.1 90.0

F1 82.0 88.8 89.5 90.8 84.1 85.6 87.6 88.4

We finally add our proposed seg-consist loss to reach final proposed volumetric
version of framework. As for point cloud extension, we transfer experiment set
(3) to point cloud version using pointnet and pointnet++ noted as (5) pc and
(6) pc! correspondingly. Then we integrate seg-consist to form (5) pc+loss
and (5) pc!+loss.

As showed in Table 2, task is more challenging in original space than in
mask space. Since gap between (2) and (3) is relative small. We conjecture
that even though cardiac mask is informative, coronary artery mask itself has
already contained most valuable information So even when the cardiac mask is
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Table 3. Efficiency analysis between volumetric input and point cloud input. Train
time calculates costs for training 1000 epochs on 200 training set

Object GPU Train Time (GPU hrs) Infer Memory (MB) Infer Time (s)

V-net 1060 197 3736 1.0 ± 0.1

PointNet 1060 8 938 0.03 ± 0.01

PointNet++ 1060 42 3082 1.2 ± 0.1

not obtainable, our proposed framework will remain effective. Comparing with
volumetric input, point cloud version achieves slightly inferior but compatible
results. And no matter in which formation of parsing process, seg+consist loss
is beneficial.

We further analyze efficiency in terms of both time and space for two for-
mations. As listed in Table 3, point cloud version is much more space and time
efficient. It serves as a good choice under limited memories or facing abundant
training data.

4 Conclusion

In this paper, we present a new concise, effective and flexible framework for
automatic coronary artery labeling by modeling the task as coronary artery
parsing task. An intact pipeline is proposed and two paralleled sub-modules
are further designed to consume volumetric image and unordered point cloud
correspondingly. Finally, a self-contained loss is proposed to supervise labeling
process. At experiment section, we conducted comprehensive experiments on
collected 526 CCTA scans. Stable and promising results are exhibited.
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