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ABSTRACT Quantifying full left ventricular (LV) metrics including cavity area, myocardium area, cavity
dimensions and wall thicknesses from cardiac magnetic resonance (MR) images, and then assessing regional
and global cardiac function plays a crucial role in clinical practice. However, due to highly variable cardiac
structures across different subjects, it is challenging to obtain an accurate estimation of LV metrics. In this
paper, we propose a novel deep learning framework, called cascaded segmentation and regression network
(CSRNet), to improve the quantification results. The CSRNet consists of two components: a segmentation
component and a regression component. The segmentation component yields myocardial contours of the left
ventricle from the input cardiac MR images, and then the regression component learns hierarchical repre-
sentations from the segmented images and estimates the desired LV metrics. By introducing the myocardial
contours, the regression component can pay more attention to the left ventricle, which contributes to more
accurate quantification results, although the cardiac structures are variable. The extensive experiments on a
dataset of 145 subjects demonstrate that our framework outperforms the state-of-the-art methods.

INDEX TERMS Cardiac magnetic resonance images, quantification, left ventricular metrics, deep learning
model, regression.

I. INTRODUCTION
Magnetic resonance imaging (MRI) is one of the most
popular medical imaging modalities to detect cardiovascular
disease due to its noninvasive and versatile nature. Quantifi-
cation of full left ventricular (LV) metrics (as shown in Fig. 1)
including cavity area, myocardium area, cavity dimensions
and wall thicknesses from magnetic resonance (MR) images
is of great significance in clinical practice. On the one hand,
the heart volume can be obtained by accumulating cavity and
myocardium areas spatially from the base to the apex and
multiplying the slice thickness, and then the cardiac function
parameters such as stroke volume, ejection fraction can be
computed for assessing global cardiac function. On the other
hand, cavity dimensions and wall thicknesses can provide
regional cardiac function assessment and conduce to early
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approving it for publication was Mufti Mahmud.

FIGURE 1. Full LV metrics to be quantified. (a) A1: cavity area, A2:
myocardium area (b) d1-d3: cavity dimensions (c) A-AS: wall thicknesses.

disease diagnosis such as cardiac hypertrophy andmyocardial
infarction.

There are many researches have been conducted to quan-
tify the LV metrics for years. We roughly divide the existing
methods into two-step methods [1]–[9] and end-to-end meth-
ods [10]–[15] according to how they are carried out. Two-
step methods are usually carried out in two manners. One
is based on segmentation [1], [3]–[5], where the endo- and
epi-cardium of the left ventricle are extracted first, and then
the desired LV metrics are estimated based on segmentation
results. The other manner takes advantage of machine learn-
ing algorithms [7]–[9], where features are extracted from
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FIGURE 2. There are highly variable structures across different subjects,
containing the variations of shape, size and papillary muscle in the blood
pool, which is a big challenge when extracting robust representation of
the left ventricle.

FIGURE 3. The overview of the proposed CSRNet, which is composed of
segmentation component and regression component to estimate full LV
metrics. The solid arrows denote forward propagation while the dashed
arrows indicate backward.

the cardiacMR images and a regression learningmodel is fol-
lowed to estimate the LV metrics. In both two-step manners,
the two steps are independent of each other and the estimated
LV metrics are heavily dependent on the results of first step,
i.e., segmented contours or extracted features.

In contrast to the two-step methods, end-to-end meth-
ods [10]–[15] combing feature extraction and metrics regres-
sion together via using deep neural networks, have attracted
considerable attention in very recent years. In this kind of
methods, the Convolutional Neural Network (CNN) is usu-
ally utilized to learn common representations from cardiac
MR images of different subjects, and the Recurrent Neural
Network (RNN) is used to capture temporal dynamics over
a cardiac cycle. However, due to the variations of the left
ventricle in shape, size and papillary muscle in the blood
pool across different subjects which are shown in FIG. 2, it is
challenging to obtain accurate estimation of the LV metrics.

In this paper, we propose to introduce the myocardial
contours of the left ventricle into an end-to-end deep learn-
ing framework to improve quantification results of LV met-
rics. The proposed end-to-end framework, called Cascaded
Segmentation and Regression Network (CSRNet), which is
shown in FIG.3. The CSRNet consists of two components,
i.e., segmentation component and regression component. The
segmentation component classifies each pixel in the car-
diac MR images into one of the three distinct categories,
i.e., background, myocardium and cavity, aiming to extract
the myocardial contours of the left ventricle and remove
those task-unrelated structures. The regression component
extracts features from the segmented images and estimates
the desired LV metrics. Since the proposed CSRNet takes
into account the myocardial contours of the left ventricle,
it has great superiority in learning more robust representation
from images and thus getting more accurate quantification
results. For clarity, the main contributions of this work are
summarized as follows:

1) We propose an effective end-to-end framework to
improve quantification results of full LVmetrics, which
includes two areas, three cavity dimensions and six
regional wall thicknesses, aiming at precise regional
and global cardiac function assessment.

2) The proposed framework is called Cascaded Segmenta-
tion and Regression Network, CSRNet in short, which
integrates a segmentation module into a regression
learning framework.

3) Experiments on a dataset of 145 subjects demonstrate
the effectiveness of our framework. When compared
to the state-of-the-art methods, the CSRNet achieves
the lowest average Mean Absolute Error (MAE)
of 134 mm2, 1.54 mm, 1.16 mm and the largest average
Correlation Coefficient ρ of 0.965, 0.978, 0.868 for
areas, dimensions, and thicknesses, respectively.

The remainder of this paper is organized as follows: some
works related to quantification of LV metrics are introduced
briefly in Section II, and the details of the proposed CSRNet
are presented in Section III. Following that, experiment set-
tings are introduced in Section IV, and experimental results
and discussions are reported in Section V. Finally, the con-
clusion is drawn in Section VI.

II. RELATED WORKS
A. TWO-STEP METHODS FOR QUANTIFICATION OF
LV METRICS
The two-step methods for quantification of LV metrics are
carried out in two manners. The first manner is based
on segmentation, in which the myocardial contours of the
LV are first extracted manually or automatically, and then
the desired LV metrics are measured based on the seg-
mentation results. Suinesiaputra et al. [16] invited seven
experienced experts to depict the myocardial contours and
further calculated the LV metrics including cavity volumes
at end-systole (ES) and end-diastole (ED) and myocar-
dial mass at ED to assess cardiac function. However,
manual segmentation is time-consuming, experience-driven
and irreproducible. To circumvent these limitations, some
automatic segmentation algorithms, such as deformable mod-
els [1], [3], [17], [18], statistical models [4], [19], and deep
neural networks [20]–[22] were proposed. Among them,
deformable models and statistical models generally require
prior knowledge or/and user interaction, which leads to an
inefficient and inaccurate procedure. The deep neural net-
works have been proved to be promising and useful in seg-
menting cardiac images, for example, Fully Convolutional
Neural Network (FCNN) [6], [20], U-Net [21], some deep
neural networks combined with traditional deformable mod-
els [5], [23], [24], and recently proposed deep regression seg-
mentation method [25]. However, the quantification results
are completely dependent on the accuracy of segmentation
results in this kind of segmentation-based method.

Li et al. coined the direct manner of two-step meth-
ods [7]–[9] to quantify LV metrics. In this manner,
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segmentation is no longer necessary, and machine learning
algorithms are employed, in which features are extracted
first and an independent regression learning model follows to
estimate LV metrics. For example, Wang et al. [7] proposed
an adaptive Bayesian formulation based on blob, homogene-
ity, and edge features to calculate bi-ventricular volumes.
Zhen et al. [8] first extracted hierarchical representations by
using multi-scale deep neural network, and then put them
into a random regression forest to estimate the volume of left
ventricle. Furthermore, four chamber volumes are estimated
directly by using supervised descriptor learning (SDL) [9].
In this kind of two-step methods, there is only forward con-
nection and no feedback from the second step. And thus fea-
tures extracted in the first step may not be closely relevant to
the target tasks, as a result, the estimation results in the second
step may not be so accurate.

B. END-TO-END METHODS FOR THE LV QUANTIFICATION
Very recently, deep learning is employed to quantify
the LV metrics in an end-to-end manner, where features
extraction and metrics regression are integrated together.
Luo et al. [10], [26] and Kabani and El-Sakka [11] took
advantage of CNN to calculate the volume at ED and ES.
In [26], multi-views fusion strategy was employed to improve
the estimated volumes. Xue et al. [12] proposed an integrated
model to yield multiple LV metrics, including two areas and
six regional wall thicknesses on each frame over a cardiac
cycle. In order to capture temporal dynamics of cardiac
sequences, Xue et. al [13] employed the RNN following
the CNN module to estimate six regional wall thicknesses.
Furthermore, Xue et al. [14], [15] focused on the quantifi-
cation of full LV metrics, which requires to estimate areas,
directional dimensions and regional wall thicknesses at one
time for each MR image. In order to attain more accurate
results, they not only employed the CNN and RNN modules,
but alsomodeled the correlations among different LVmetrics.
However, there are still difficulties for the end-to-end meth-
ods to extract discriminative features because of highly vari-
able cardiac structures across different subjects. Following
the work of Xue et al., we build the Cascaded Segmentation
and Regression Network (CSRNet), in which the segmen-
tation component extracts myocardial contours of the left
ventricle and the regression component estimates the desired
LV metrics from those segmented images. By integrating a
segmentation module into a regression learning framework,
the network can learn more robust image representation and
get more accurate estimation results.

III. CSRNET MODEL
The overview of the proposed CSRNet is shown in FIG.3,
where the segmentation component takes cardiac MR images
as input so that myocardial contours of the left ventricle
are extracted and task-unrelated structures are removed, and
then, the regression component learns hierarchical represen-
tations from the segmented images and yields the desired
LV metrics. The objective function of proposed CSRNet can

be written as follows,

ŷts,f = fCSRNet (xs,f |wCSRNet ), (1)

where X = xs,f are the input cardiac MR images, and
Y = ŷts,f are the output LV metrics. s = 1 · · · S denotes
subjects, and f = 1 · · ·F represents frame sequence, t ∈
{areas, dimensions,wall thicknesses}. wCSRNet is the param-
eters set of the CSRNet. The segmentation and regression
component will be detailed in the following subsections.

A. SEGMENTATION COMPONENT
We employ a Densely Connected Convolutional Net-
work (DenseNet) [27] architecture for segmentation, which
exploits dense connectivity between layers. This architec-
ture can reduce the number of parameters to be learned and
encourage feature reuse throughout the network. As shown in
FIG.4, the DenseNet architecture extracts the features of car-
diac MR images mainly through three dense blocks and three
transition blocks. FIG.4(b) shows the details of the dense
block. There are three identical ‘‘dense layer’’ including
BN-ReLU-conv (1 × 1) -BN-ReLU-conv (3× 3) operations.
As reported in [27], although each layer in the dense block
only produces k (growth rate) output feature-maps, it typ-
ically has many more inputs through concatenation. There-
fore, 1 × 1 convolution before 3 × 3 is employed to reduce
the number of feature-maps. As for the transition block,
except for a 1 × 1 convolution with the same effect, average
pooling operation is also employed for reducing image spatial
resolution. After a series of convolution and pooling oper-
ations, feature-maps with different scales are upsampled to
the original resolution by utilizing transposed convolutions.
To combine information from the coarse high layer with that
from the fine low layer, all transposed feature-maps are con-
catenated. Finally, three probability maps corresponding to
three different categories, i.e., background, myocardium and
cavity are generated by an extra transposed convolution with
the softmax function. Different from traditional segmentation
tasks, a soft classification result instead of a true category
label map is needed here, so that the CSRNet can work in
an end-to-end manner.

B. REGRESSION COMPONENT
A Convolutional Neural Network (CNN) is responsible for
the regression learning, which is shown in FIG.5. The CNN
takes soft segmentation results from the DenseNet as input,
and extracts hierarchical features through a stack of convo-
lutional layers and max-pooling layers. All feature-maps of
size 6 × 6 obtained from the last max-pooling layer are con-
verted into a feature vector. Following that, the first fully con-
nected layer selects common representations from this vector
for all desired LV metrics and the second fully connected
layer matches some more relevant features to the specific LV
metrics. Here, we employ a larger convolution kernel of size
5 × 5, instead of 3 × 3 used in the DenseNet, since there is
no necessity to care about finer information when those task-
unrelated structures have been removed. This simple network
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FIGURE 4. The overview of the segmentation component. (a) The DenseNet architecture for segmentation. Features of
cardiac MR images are extracted mainly through three dense blocks and three transition blocks. Each ‘‘deconv’’ here
corresponds to the sequence ‘‘deconv-BN-ReLU’’ and there are two different segmentation results from the DenseNet:
the left ‘‘true’’ segmentation result is generated from the predicted category labels while the right ‘‘soft’’ one is
produced by weighting three probability maps. Details of the dense block and the transition block are illustrated in
(b) and (c), where k (= 16 in our network) represents the growth rate of feature channels, and θ (= 0.5 in our
network) determines the output number of channels. (a) The DenseNet architecture for segmentation. (b) Dense block.
(c) Transition block.

FIGURE 5. The CNN for regression component. The CNN consists of three convolution layers and two fully
connected layers, each convolution contains convolution and ReLU operations. The soft segmentation results
of cardiac MR image from the DenseNet are as input for the CNN.

is effective enough for the regression task, since it can easily
learn more task-relevant representations from the segmented
images.

C. TRAINING STRATEGY
1) PRE-TRAINING THE DENSENET
Wefirst pre-train the DenseNet to provide good initial param-
eters for the following end-to-end training. Objective function
of the DenseNet can be expressed as follows:

ŷcs,f ,(m,n) = fDense(xs,f |wDense), (2)

where X = xs,f are the input cardiac images, and Y =
ŷcs,f ,(m,n) are the category labels for each pixel. s = 1 · · · S
denotes diverse subjects, and f = 1 · · ·F represents frame
sequence, c ∈ {background,myocardium, cavity}. (m, n)
denotes the pixel index, and wDense is the parameters set of
DenseNet. The DenseNet is trained by minimizing the mean
log-likelihood cost, and the loss for category prediction is

Llog = −
∑

s,f ,(m,n)
∑

c y
c
s,f ,(m,n)logŷ

c
s,f ,(m,n)

S × F ×M × N
, (3)

where ycs,f ,(m,n) is the annotated category for each pixel.
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FIGURE 6. Pre-processing of original images. (a) Original image. (b) Landmarks labeling. (c) Rotation. (d) ROI cropping.
(e) Resizing (80 × 80).

2) TRAINING THE CSRNET
The CSRNet is trained in an end-to-end manner, in which
the segmentation component takes the pre-trained parameters
from the DenseNet as initialization, and the regression com-
ponent employs the parameters from scratch. We minimize
the mean squared errors (MSE) to optimize the parameters,
and the loss for estimated LV metrics is

Lmse =

∑
s,f
∑

t

(
ŷts,f − y

t
s,f

)2
2× S × F

, (4)

where yts,f are the ground truth of metrics. s = 1 · · · S denotes
diverse subjects and f = 1 · · ·F represents frame sequence,
t ∈ {areas, dimensions,wall thicknesses}.

IV. EXPERIMENT SETTINGS
A. DATASET
The dataset employed in this work has been utilized in our
previous works [12]–[15], which includes 2900 2D short-axis
cine MR images of 145 subjects. For each subject, the mid-
cavity slice of 20 frames over a cardiac cycle is selected.
The subjects age from 16 years to 97 years and the
pixel spacings of MR images range from 0.6836 mm/pixel
to 2.0833 mm/pixel, with mode of 1.5625 mm/pixel.
Diverse pathologies are in presence including regional wall
motion abnormalities, myocardial hypertrophy, atrial septal
defect, etc. More details of the dataset can be also found
in [12]–[15]. Before the experiments, several pre-processing
steps (shown in FIG.6) are carried out on the original MR
images, which include the following operations,

1) LANDMARKS LABELLING
The first frame of each subject is required to manually label
two landmarks, and remaining frames use the same coordi-
nates generated from these two landmarks to keep consistent.
The landmarks locate in the intersection of left and right
ventricular wall, which are shown in FIG.6(b).

2) ROTATION
Connect the two landmarks into a line, and rotate the
image until the line is perpendicular to the horizon
(shown in FIG.6(c)). Notably, the resulting image after rota-
tion should be taken to ensure that the right ventricle is on the
left of the left ventricle.

3) ROI CROPPING
Taking the midpoint of the line between two labeled land-
marks as the center, twice the length of the line as the size,
we crop the ROI into a square as shown in FIG.6(d).

4) RESIZING
In this step, all cropped images are resized to 80× 80. In order
to display easily, the resized image is zoomed in FIG.6(e).

After all above pre-processing steps, the myocardial bor-
ders are manually contoured by two experienced radiol-
ogists and then the ground truth of LV metrics can be
measured according to the contoured borders, more details
shown in [12].

B. CONFIGURATIONS
To demonstrate the performance of our model with limited
cardiac images, we divide the dataset equally into five groups,
performing five-fold cross validation. During this procedure,
four groups with a total of 2320 images are employed for
training and the left group of 580 images for testing. The
training operation will be performed five times so as to gen-
erate five different models to test all 2900 images. Each time
the DenseNet is pre-trained first, and the CSRNet is further
trained in an end-to-end manner, and they both use the same
training data with 2320 images. In our experiment, all net-
works are implemented by Tensorflow [28] with AdamOpti-
mizer [29], 100 training steps for pre-trained DenseNet and
200 training steps for the end-to-end trained CSRNet. Both
training and testing procedure are carried out on a geforce
gtx 1080 ti GPU.

C. EVALUATION CRITERIA
1) EVALUATION OF SEGMENTATION RESULTS
We evaluate the segmentation results quantitatively with Dice
Coefficient (DC) and Hausdorff Distance (HD). They are
defined as follows:

DC =
2|A ∩ B|
|A| + |B|

, (5)

HD = max(h(A,B), h(B,A)),

h(A,B) = max
(a∈A)

min
(b∈B)
‖a− b‖ ,

h(B,A) = max
(b∈B)

min
(a∈A)
‖b− a‖ , (6)

where A and B are the coordinate set of pixels for segmen-
tation results and annotation respectively, and ‖·‖ represents
the distance paradigm.
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TABLE 1. Comparison of segmentation results between U-Net [21] and DenseNet. dice coefficient and hausdorff distance (mm) between the
segmentation results and annotation are reported.

2) EVALUATION OF QUANTIFICATION RESULTS
Quantification results are evaluated according to two criteria,
i.e, Mean Absolute Error (MAE) and Correlation Coefficient
ρ, which are defined as follows:

MAE t =
1

S × F

S∑
s=1

F∑
f=1

∣∣∣yts,f − ŷts,f ∣∣∣ , (7)

ρt =

2
S∑
s=1

F∑
f=1

(
yts,f − y

t
m

) (
ŷts,f − ŷ

t
m

)
S∑
s=1

F∑
f=1

(
(yts,f − y

t
m)2 + (ŷts,f − ŷ

t
m)2
) , (8)

where ytm and ŷtm are the mean values of ground truth and
estimated results, respectively. As can be seen from the above
equations, MAE reflects mean absolute difference between
the values of ground truth and estimated results, and the ρ
reflects linear correlation between them. The lower MAE is,
the higher estimated accuracy is, and the larger ρ is, the closer
the distribution between values of ground truth and estimated
results is.

V. EXPERIMENTAL RESULTS AND DISCUSSION
A. PERFORMANCE OF DENSENET FOR SEGMENTATION
To better evaluate the performance of DenseNet, we used
a slightly modified version of U-Net [21] for comparison,
which employs padding operation in all 3 × 3 convolutions
to prevent information loss of border pixels and thus no
longer requires the cropping operation when a short cut is
connected between the encoder and decoder. All training
details of U-Net are the same as that of DenseNet. Dice
Coefficient and Hausdorff Distance between the results of
segmentation and annotation are reported in the TABLE 1.
We can see that both methods achieve accurate segmentation
results, and the DenseNet performs slightly better than the
U-Net. Among three categories, the segmentation results of
background are the best, followed by the cavity and the worst
for myocardium. The reason behind this observation is that
the cavity and myocardium change a lot across different sub-
jects and during a cardiac cycle, which makes them more dif-
ficult to be recognized. Furthermore, since the myocardium
locates between background and cavity, it is easier for the
algorithm to make mistakes. Other details of network such
as parameters are shown in TABLE 2. We can see that the
number of parameters of U-Net is one hundred times that of
the DenseNet, and correspondingly, training time and testing
time are significantly longer than that of the DenseNet. It is
well-known that the annotated data are always limited in the

TABLE 2. U-Net [21], DenseNet and CSRNet in terms of parameters,
epochs and times are reported.

community of medical image analysis, and as a result, fewer
parameters in the deep learning model contribute to avoid
overfitting during the training procedure.

We also show some qualitative segmentation results of
DenseNet in FIG.7. The first four rows show the cardiac
images, annotated masks, estimated masks and misclassified
pixels of frame 1-10, respectively, while the last four rows
display that of frame 11-20. The estimated masks obtained
from the DenseNet are in good agreement with the masks
annotated by the experts. Temporal dynamics during cardiac
cycle accounts for the slight difference between the results of
algorithm and by experts.

B. PERFORMANCE OF CSRNET FOR QUANTIFICATION
We compute MAE and ρ of CSRNet on 145 subjects and
make comparisonwith the state-of-the-art methods, including
Max Flow model [3], two-step methods in a direct way [8],
[9], [30] and end-to-end methods [13]–[15].

1) COMPARISON WITH THE STATE-OF-THE-ART METHODS
Max Flow model [3] is a two-step method based on segmen-
tation, where myocardial contours are extracted first and then
LV metrics are measured. In Max Flow model, the first frame
for each subject is required to be delineated manually, and all
subsequent frames are automatically segmented by using the
first frame as guidance. As shown in TABLE 3, theMax Flow
model has high MAEs of LV metrics, especially for regional
wall thicknesses. However, an interesting finding is that all
ρ values are larger than that of two-step methods in a direct
way, and even some ones are larger than that of end-to-end
methods. This is because that the measured LV metrics based
on extracted contours change regularly over a whole cardiac
cycle, so that the results from Max-flow model have a good
correlation with the metrics of ground-truth.

Two-step methods without segmentation employed for
comparison are Multi-features+ RF [30], SDL+AKRF [9],
and MCDBN + RF [8], and the corresponding MAEs and
ρ values are recorded in the second column to the fourth
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FIGURE 7. Qualitative segmentation results of DenseNet. (a)-(d) are the original input cardiac MR images, manual annotation
masks, estimated results from the DenseNet, and misclassified pixels of frame 1-10, respectively. (e)-(h) are that for frame
11-20.

column of TABLE 3, respectively. Two-step methods without
segmentation first extract cardiac features, and then put them
into a regression model to calculate desired LV metrics.
As shown in TABLE 3, the two-step methods without seg-
mentation not only have a high mean absolute difference
but also a poor correlation with the ground-truth metrics.

Extracted features from the two-step methods are not closely
related to target tasks can account for high MAEs and
low ρ values.

The fifth to the seventh columns of TABLE 3 show per-
formance of end-to-end methods including Indices-Net [12],
FullLVNet [14], and DMTRL [15]. Indices-Net [12] is the
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TABLE 3. Quantification results of state-of-the-art methods and CSRNet. There are two criteria, i.e., MAE and ρ employed for each LV metrics in this table.
The best results are highlighted in bold.

first method to estimate multiple LV metrics in an end-to-
end manner. We can see that the Indices-Net has a reduction
of 17.4% for average areas and 55.1% for average wall thick-
nesses in terms of MAE when compared to Max Flow model.
FullLVNet [14] and DMTRL [15] focus on modeling rela-
tionships between different LV metrics, and capture temporal
dynamics by utilizing RNN module, which further improve
the estimation results as shown in the sixth and the seventh
columns of TABLE 3. Experimental results show that end-
to-end methods outperform all above two-step methods and
have great potential to achieve more accurate quantification
results of LV metrics.

MAEs and ρ values between the estimated results from
proposed CSRNet and ground truth are reported in the last
column of TABLE 3. We can see that CSRNet yields the
lowest average MAEs of 134 mm2, 1.54 mm, 1.16 mm and
the largest average ρ values of 0.965, 0.978, 0.868 for area,
cavity dimension, and regional wall thickness, respectively.
There is a reduction of 37.8% for cavity area and 38.6% for
average cavity dimension in terms of MAE when compared
to the DMTRL method. However, fewer improvements on

myocardium area and regional wall thicknesses are made in
terms of MAE, because that the segmentation results from
DenseNet for cavity are better than that for myocardium.
But unlike two-step methods based on segmentation, on the
one hand, the following regression network only requires the
extracted contours as guidance, not completely depend on
the segmentation results. On the other hand, the CSRNet is
trained in an end-to-end manner, which makes it possible to
further improve segmentation results under the supervision of
ground truth metrics and conduce to more accurate quantifi-
cation results in turn. In addition, the higher average ρ value
means that there is a better linear relationship between the
estimation results from CSRNet and the ground truth, which
is illustrated in FIG.8.

2) TEMPORAL DYNAMICS
Besides high variability of LV structures, temporal dynam-
ics also bring challenges to achieve accurate quantification
results of LV metrics. Twenty frames of one subject are
illustrated in FIG.9 to show complicated temporal dynam-
ics over a cardiac cycle. One can see that the LV structure
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FIGURE 8. A plot for prediction from the CSRNet vs ground-truth of LV metrics. (a) cavity area. (b) myocardium area.
(c) dimension 1. (d) dimension 2. (e) dimension 3. (f) IS. (g) I. (h) IL. (i) AL. (j) A. (k) AS.

FIGURE 9. The ability of CSRNet to handle cardiac temporal dynamics. Images in the top row illustrate a whole cardiac cycle of a
randomly selected subject. (a) and (c) are areas of the cavity and myocardium, respectively, while (b) and (d) are the average values
of three cavity dimensions and six regional wall thicknesses. Yellow: estimated values. Blue: ground truth.

changes regularly from end-systole to end-diastole, and it
is believed to get more accurate quantification results if the
temporal information can be taken into consideration. In the
CSRNet, myocardial contours extracted by DenseNet can
provide guidance on capturing temporal information to some
extent. The LV metrics including cavity area, average cav-
ity dimension, myocardium area and average regional wall
thickness are calculated and plotted in FIG.9(a) to FIG.9(d),
respectively. The estimated cavity area and average cavity
dimension have almost the same trend as those of ground

truth. On the other hand, high ρ values of 0.982 for cavity area
and 0.978 for average cavity dimension also manifests this
agreement. As for the myocardium area and average regional
wall thickness, the estimated results have a similar tendency
as ground truth. FIG.9 shows that, with the contour guidance,
CSRNet has ability to capture temporal dynamic, i.e., the
cavity area and dimensions will become smaller during the
systolic period, and get bigger over the diastolic phase, while
the myocardium area and wall thicknesses just change on the
contrary.
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TABLE 4. LV metrics estimated by the method of segment-based and CSRNet are compared under the MAE.

C. DISCUSSION
1) EFFECTIVENESS
Extensive experiments on the dataset have demonstrated
the effectiveness of CSRNet. By integrating the myocardial
contour into a regression learning framework, the CSRNet
combines the advantages of two-step methods based on seg-
mentationwith end-to-endmethods. On the one hand, the seg-
mentation module of CSRNet can remove task-unrelated
structures so that the following regression network can extract
discriminative features from the segmented images. On the
other hand, the end-to-end framework makes it possible to
further improve segmentation results under the supervision of
ground truthmetrics and conduce tomore accurate estimation
of LV metrics in turn. The introduced contours only guide
the following regression task, but do not completely deter-
mine the accuracy of quantification results like the two-step
methods based on segmentation. As a comparison, we also
calculate the LV metrics based on segmentation results from
DenseNet trained in 100 epochs. The planar LV metrics such
as cavity area, myocardium area are computed by counting
the segmented pixels, and the linear ones including cavity
dimension and wall thickness are measured according to
some certain rules like using 2D centerline method [31] men-
tioned in [12]. The MAEs for both segment-based method
and CSRNet are reported in TABLE 4. We can see that the
CSRNet outperforms the segment-based method. Further-
more, from TABLE 2, we can see that the CSRNet has about
0.6 million parameters, and takes less than 18 minutes to
train 200 epochs. In the testing phase, LV metrics of 29 sub-
jects with 580 images are estimated in only 1.2 seconds,
which demonstrates the real-time nature of CSRNet.

2) LIMITATIONS
However, because of the limitation of the dataset employed,
it is difficult to transform estimated LV metrics into cardiac
function parameters such as stroke volume, ejection fraction,
which are related to all slices from the base to the apex. In the
future, we will perform our framework on more available
datasets which contain both temporal and spatial information.

VI. CONCLUSION
In this paper, we proposed an effective end-to-end frame-
work to improve quantification results of full LV metrics.
The proposed framework is called Cascaded Segmentation

and Regression Network (CSRNet), which consists of two
components, i.e., DenseNet for segmentation and CNN for
regression. Although the LV structures across different sub-
jects are highly variable, the CSRNet can learn more robust
representation from the images and get more accurate estima-
tion of the LV metrics. We evaluated the CSRNet on 145 dif-
ferent subjects and accurate quantification results showed its
effectiveness. In the future, we will perform our framework
on more available datasets which contain both temporal and
spatial information, so that the cardiac function parameters
can be acquired and precise assessments of the heart can be
provided.
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